ﻻ يوجد ملخص باللغة العربية
We study the supersymmetric version of the type-II seesaw mechanism assuming minimal supergravity boundary conditions. We calculate branching ratios for lepton flavour violating (LFV) scalar tau decays, potentially observable at the LHC, as well as LFV decays at low energy, such as $l_i to l_j + gamma$ and compare their sensitivity to the unknown seesaw parameters. In the minimal case of only one triplet coupling to the standard model lepton doublets, ratios of LFV branching ratios can be related unambigously to neutrino oscillation parameters. We also discuss how measurements of soft SUSY breaking parameters at the LHC can be used to indirectly extract information of the seesaw scale.
In minimal supergravity (mSugra), the neutrino sector is related to the slepton sector by means of the renormalization group equations. This opens a door to indirectly test the neutrino sector via measurements at the LHC. Concretely, for the simplest
In this work we study the Lepton Flavour Violating semileptonic $tau$ decays: 1) $tau to mu PP$ with $PP= pi^+pi^-, pi^0pi^0, K^+K^-, K^0 {bar K}^0$; 2) $tau to mu P$ with $P=pi^0, eta, eta$ and 3) $tau to mu V$ with $V = rho^0, phi$. We work within
We propose a Standard Model extension with underlying A4 flavour symmetry where small Dirac neutrino masses arise from a Type-II seesaw mechanism. The model predicts the golden flavour-dependent bottom-tau mass relation, requires an inverted neutrino
We address the constraints on the SUSY seesaw parameters arising from Lepton Flavour Violation observables. Working in the Constrained Minimal Supersymmetric Standard Model extended by three right-handed (s)neutrinos, we study the predictions for the
Lepton-flavour violating tau-decays are predicted in many extensions of the Standard Model at a rate observable at future collider experiments. In this article we focus on the decay tau to mu mu antimu, which is a promising channel to observe lepton-