ﻻ يوجد ملخص باللغة العربية
The interplay between the diffeomorphism and conformal symmetries (a feature common in quantum field theories) is shown to be exhibited for the case of black holes in two dimensional classical Liouville theory. We show that although the theory is conformally invariant in the near horizon limit, there is a breaking of the diffeomorphism symmetry at the classical level. On the other hand, in the region away from the horizon, the conformal symmetry of the theory gets broken with the diffeomorphism symmetry remaining intact.
In a diffeomorphism invariant theory, symmetry breaking may be a mask for coordinate choice.
The problem of maintaining scale and conformal invariance in Maxwell and general N-form gauge theories away from their critical dimension d=2(N+1) is analyzed.We first exhibit the underlying group-theoretical clash between locality,gauge,Lorentz and
Standard inflationary models yield a characteristic signature of a primordial power spectrum with a red tensor and scalar tilt. Nevertheless, Cannone et al recently suggested that, by breaking the assumption of spatial diffeomorphism invariance in th
In the AdS$_3$/CFT$_2$ correspondence, we find some conformal field theory (CFT) states that have no bulk description by the Ba~nados geometry. We elaborate the constraints for a CFT state to be geometric, i.e., having a dual Ba~nados metric, by comp
In this paper we use the covariant Peierls bracket to compute the algebra of a sizable number of diffeomorphism-invariant observables in classical Jackiw-Teitelboim gravity coupled to fairly arbitrary matter. We then show that many recent results, in