ﻻ يوجد ملخص باللغة العربية
Assume that samples of a filtered version of a function in a shift-invariant space are avalaible. This work deals with the existence of a sampling formula involving these samples and having reconstruction functions with compact support. Thus, low computational complexity is involved and truncation errors are avoided. This is done in the light of the generalized sampling theory by using the oversampling technique: more samples than strictly necessary are used. For a suitable choice of the sampling period, a necessary and sufficient condition is given in terms of the Kronecker canonical form of a matrix pencil. Comparing with other characterizations in the mathematical literature, the given here has an important advantage: it can be reliable computed by using the GUPTRI form of the matrix pencil. Finally, a practical method for computing the compactly supported reconstruction functions is given for the important case where the oversampling rate is minimum.
We study the impact of sampling theorems on the fidelity of sparse image reconstruction on the sphere. We discuss how a reduction in the number of samples required to represent all information content of a band-limited signal acts to improve the fide
In a tight-binding lattice model with $n$ orbitals (single-particle states) per site, Wannier functions are $n$-component vector functions of position that fall off rapidly away from some location, and such that a set of them in some sense span all s
The main purpose of the paper is to give a characterization of all compactly supported dual windows of a Gabor frame. As an application, we consider an iterative procedure for approximation of the canonical dual window via compactly supported dual wi
We develop a novel sampling theorem on the sphere and corresponding fast algorithms by associating the sphere with the torus through a periodic extension. The fundamental property of any sampling theorem is the number of samples required to represent
We develop a novel sampling theorem for functions defined on the three-dimensional rotation group SO(3) by connecting the rotation group to the three-torus through a periodic extension. Our sampling theorem requires $4L^3$ samples to capture all of t