We construct a CW decomposition $C_n$ of the $n$-dimensional half cube in a manner compatible with its structure as a polytope. For each $3 leq k leq n$, the complex $C_n$ has a subcomplex $C_{n, k}$, which coincides with the clique complex of the half cube graph if $k = 4$. The homology of $C_{n, k}$ is concentrated in degree $k-1$ and furthermore, the $(k-1)$-st Betti number of $C_{n, k}$ is equal to the $(k-2)$-nd Betti number of the complement of the $k$-equal real hyperplane arrangement. These Betti numbers, which also appear in theoretical computer science, numerical analysis and engineering, are the coefficients of a certain Pascal-like triangle (Sloanes sequence A119258). The Coxeter groups of type $D_n$ act naturally on the complexes $C_{n, k}$, and thus on the associated homology groups.