ﻻ يوجد ملخص باللغة العربية
In this paper we give explicit examples of power-law correlated stationary Markovian processes y(t) where the stationary pdf shows tails which are gaussian or exponential. These processes are obtained by simply performing a coordinate transformation of a specific power-law correlated additive process x(t), already known in the literature, whose pdf shows power-law tails 1/x^a. We give analytical and numerical evidence that although the new processes (i) are Markovian and (ii) have gaussian or exponential tails their autocorrelation function still shows a power-law decay <y(t) y(t+T)>=1/T^b where b grows with a with a law which is compatible with b=a/2-c, where c is a numerical constant. When a<2(1+c) the process y(t), although Markovian, is long-range correlated. Our results help in clarifying that even in the context of Markovian processes long-range dependencies are not necessarily associated to the occurrence of extreme events. Moreover, our results can be relevant in the modeling of complex systems with long memory. In fact, we provide simple processes associated to Langevin equations thus showing that long-memory effects can be modeled in the context of continuous time stationary Markovian processes.
A class of non-local contact processes is introduced and studied using mean-field approximation and numerical simulations. In these processes particles are created at a rate which decays algebraically with the distance from the nearest particle. It i
The persistence of a stochastic variable is the probability that it does not cross a given level during a fixed time interval. Although persistence is a simple concept to understand, it is in general hard to calculate. Here we consider zero mean Gaus
We propose a method to calculate the large deviations of current fluctuations in a class of stochastic particle systems with history-dependent rates. Long-range temporal correlations are seen to alter the speed of the large deviation function in anal
We present a treatment of non-Markovian character of memory by incorporating different forms of Mittag-Leffler (ML) function, which generally arises in the solution of fractional master equation, as different memory functions in the Generalized Kolmo
We numerically study the dynamics of elementary 1D cellular automata (CA), where the binary state $sigma_i(t) in {0,1}$ of a cell $i$ does not only depend on the states in its local neighborhood at time $t-1$, but also on the memory of its own past s