ﻻ يوجد ملخص باللغة العربية
In the recent literature there has been some doubt as to the reliability of CO multi-transitional line observations as a mass-loss-rate estimator for AGB stars. Mass-loss rates for 10 intermediate- to high-mass-loss-rate AGB stars are derived using a detailed non-LTE, non-local radiative transfer code based on the Monte-Carlo method to model the CO radio line intensities. The circumstellar envelopes are assumed to be spherically symmetric and formed by constant mass-loss rates. The energy balance is solved self-consistently and the effects of dust on the radiation field and thermal balance are included. An independent estimate of the mass-loss rate is also obtained from the combination of dust radiative transfer modelling with a dynamical model of the gas and dust particles. We find that the CO radio line intensities and shapes are successfully reproduced for the majority of our objects assuming a constant mass-loss rate. Moreover, the CO line intensities are only weakly dependent on the adopted micro-turbulent velocity, in contrast to recent claims in the literature. The two methods used in the present work to derive mass-loss-rates are consistent within a factor of ~3 for intermediate- to high-mass-loss-rate objects, indicating that this is a lower limit to the uncertainty in present mass-loss-rate estimates. We find a tentative trend with chemistry. Mass-loss rates from the dust/dynamical model are systematically higher than those from the CO model for the carbon stars and vice versa for the M-type stars. This could be ascribed to a discrepancy in the adopted CO/H_2-abundance ratio, but we caution that the sample is small and systematic errors cannot be excluded.
As part of a reanalysis of Galactic Asymptotic Giant Branch stars (hereafter AGB stars) at infrared wavelengths, we discuss here two samples (the first of carbon-rich stars, the second of S stars) for which photometry in the near- and mid-IR and dist
It is important to properly describe the mass-loss rate of AGB stars, in order to understand their evolution from the AGB to PN phase. The primary goal of this study is to investigate the influence of metallicity on the mass-loss rate, under well det
This is the first publication of the DEATHSTAR project. The goal of the project is to reduce the uncertainties of observational estimates of mass-loss rates from Asymptotic Giant Branch (AGB) stars. Line emission from 12CO J=2-1 and 3-2 were mapped u
We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of asymptotic giant branch (AGB), red supergiant (RSG), and yellow hypergiant
Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmospher