ﻻ يوجد ملخص باللغة العربية
Broydens method, widely used in quantum chemistry electronic-structure calculations for the numerical solution of nonlinear equations in many variables, is applied in the context of the nuclear many-body problem. Examples include the unitary gas problem, the nuclear density functional theory with Skyrme functionals, and the nuclear coupled-cluster theory. The stability of the method, its ease of use, and its rapid convergence rates make Broydens method a tool of choice for large-scale nuclear structure calculations.
The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. Wi
We present here a first application of the Fermionic Molecular Dynamics (FMD) approach to low-energy nuclear reactions, namely the $^3$He($alpha$,$gamma$)$^7$Be radiative capture reaction. We divide the Hilbert space into an external region where the
The coupled-cluster wave function factorizes to a very good approximation into a product of an intrinsic wave function and a Gaussian for the center-of-mass coordinate. The width of the Gaussian is in general not identical to the oscillator length of
We present several coupled-cluster calculations of ground and excited states of 4He and 16O employing methods from quantum chemistry. A comparison of coupled cluster results with the results of exact diagonalization of the hamiltonian in the same mod
A finite rank separable approximation for the quasiparticle RPA calculations with Skyrme interactions that was proposed in our previous work is extended to take into account the coupling between one- and two-phonon terms in the wave functions of exci