ﻻ يوجد ملخص باللغة العربية
We extend certain basic and general concepts of thermodynamics to discrete Markov systems exchanging work and heat with reservoirs. In this framework we show that the celebrated Clausius inequality can be generalized and becomes an equality, significantly extending several recent results. We further show that achieving zero dissipation in a system implies that detailed balance obtains, and as a consequence there is zero power production. We obtain inequalities for power production under more general circumstances and show that near equilibrium obtaining maximum power production requires dissipation to be of the same order of magnitude.
We review generalized Fluctuation-Dissipation Relations which are valid under general conditions even in ``non-standard systems, e.g. out of equilibrium and/or without a Hamiltonian structure. The response functions can be expressed in terms of suita
The total entropy production of stochastic systems can be divided into three quantities. The first corresponds to the excess heat, whilst the second two comprise the house-keeping heat. We denote these two components the transient and generalised hou
Life has most likely originated as a consequence of processes taking place in non-equilibrium conditions (textit{e.g.} in the proximity of deep-sea thermal vents) selecting states of matter that would have been otherwise unfavorable at equilibrium. H
During a spontaneous change, a macroscopic physical system will evolve towards a macro-state with more realizations. This observation is at the basis of the Statistical Mechanical version of the Second Law of Thermodynamics, and it provides an interp
The common saying, that information is power, takes a rigorous form in stochastic thermodynamics, where a quantitative equivalence between the two helps explain the paradox of Maxwells demon in its ability to reduce entropy. In the present paper, we