ﻻ يوجد ملخص باللغة العربية
We classify, in a group theoretical manner, the BPS configurations in the multiple M2-brane theory recently proposed by Bagger and Lambert. We present three types of BPS equations preserving various fractions of supersymmetries: in the first type we have constant fields and the interactions are purely algebraic in nature; in the second type the equations are invariant under spatial rotation SO(2), and the fields can be time-dependent; in the third class the equations are invariant under boost SO(1,1) and provide the eleven-dimensional generalizations of the Nahm equations. The BPS equations for different number of supersymmetries exhibit the division algebra structures: octonion, quarternion or complex.
We continue our study of BPS equations and supersymmetric configurations in the Bagger-Lambert theory. The superalgebra allows three different types of central extensions which correspond to compounds of various M-theory objects: M2-branes, M5-branes
Among newly discovered M2, M5 objects in the Bagger-Lambert-Gustavsson theory, our interest is about half BPS vortices which are covariantly holomorphic curves in transverse coordinates. We restrict ourselves to the case where the global symmetry is
We consider how to take an orbifold reduction for the multiple M2-brane theory recently proposed by Bagger and Lambert, and discuss its relation to Chern-Simons theories. Starting from the infinite dimensional 3-algebra realized as the Nambu bracket
We show that the N=8 superconformal Bagger-Lambert theory based on the Lorentzian 3-algebra can be derived by taking a certain scaling limit of the recently proposed N=6 superconformal U(N)xU(N) Chern-Simons-matter theories at level (k, -k). The scal
We provide a semiclassical description of framed BPS states in four-dimensional N = 2 super Yang-Mills theories probed by t Hooft defects, in terms of a supersymmetric quantum mechanics on the moduli space of singular monopoles. Framed BPS states, li