Two-dimensional quantum loop gases are elementary examples of topological ground states with Abelian or non-Abelian anyonic excitations. While Abelian loop gases appear as ground states of local, gapped Hamiltonians such as the toric code, we show that gapped non-Abelian loop gases require non-local interactions (or non-trivial inner products). Perturbing a local, gapless Hamiltonian with an anticipated ``non-Abelian ground-state wavefunction immediately drives the system into the Abelian phase, as can be seen by measuring the Hausdorff dimension of loops. Local quantum critical behavior is found in a loop gas in which all equal-time correlations of local operators decay exponentially.