ترغب بنشر مسار تعليمي؟ اضغط هنا

Random Attractors for the Stochastic Benjamin-Bona-Mahony Equation on Unbounded Domains

212   0   0.0 ( 0 )
 نشر من قبل Bixiang Wang
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Bixiang Wang




اسأل ChatGPT حول البحث

We prove the existence of a compact random attractor for the stochastic Benjamin-Bona-Mahony Equation defined on an unbounded domain. This random attractor is invariant and attracts every pulled-back tempered random set under the forward flow. The asymptotic compactness of the random dynamical system is established by a tail-estimates method, which shows that the solutions are uniformly asymptotically small when space and time variables approach infinity.



قيم البحث

اقرأ أيضاً

128 - Bixiang Wang 2008
The existence of a random attractor for the stochastic FitzHugh-Nagumo system defined on an unbounded domain is established. The pullback asymptotic compactness of the stochastic system is proved by uniform estimates on solutions for large space and time variables. These estimates are obtained by a cut-off technique.
152 - T. Congy , G. A. El , M. A. Hoefer 2020
Long time dynamics of the smoothed step initial value problem or dispersive Riemann problem for the Benjamin-Bona-Mahony (BBM) equation $u_t + uu_x = u_{xxt}$ are studied using asymptotic methods and numerical simulations. The catalog of solutions of the dispersive Riemann problem for the BBM equation is much richer than for the related, integrable, Korteweg-de Vries equation $u_t + uu_x + u_{xxx} =0.$ The transition width of the initial smoothed step is found to significantly impact the dynamics. Narrow width gives rise to rarefaction and dispersive shock wave (DSW) solutions that are accompanied by the generation of two-phase linear wavetrains, solitary wave shedding, and expansion shocks. Both narrow and broad initial widths give rise to two-phase nonlinear wavetrains or DSW implosion and a new kind of dispersive Lax shock for symmetric data. The dispersive Lax shock is described by an approximate self-similar solution of the BBM equation whose limit as $t to infty$ is a stationary, discontinuous weak solution. By introducing a slight asymmetry in the data for the dispersive Lax shock, the generation of an incoherent solitary wavetrain is observed. Further asymmetry leads to the DSW implosion regime that is effectively described by a pair of coupled nonlinear Schr{o}dinger equations. The complex interplay between nonlocality, nonlinearity and dispersion in the BBM equation underlies the rich variety of nonclassical dispersive hydrodynamic solutions to the dispersive Riemann problem.
349 - Bixiang Wang 2012
This paper is concerned with the asymptotic behavior of solutions of the two-dimensional Navier-Stokes equations with both non-autonomous deterministic and stochastic terms defined on unbounded domains. We first introduce a continuous cocycle for the equations and then prove the existence and uniqueness of tempered random attractors. We also characterize the structures of the random attractors by complete solutions. When deterministic forcing terms are periodic, we show that the tempered random attractors are also periodic. Since the Sobolev embeddings on unbounded domains are not compact, we establish the pullback asymptotic compactness of solutions by Balls idea of energy equations.
72 - G. T. Adamashvili 2020
New two-component vector breather solution of the modified Benjamin-Bona-Mahony (MBBM) equation is considered. Using the generalized perturbation reduction method the MBBM equation is reduced to the coupled nonlinear Schrodinger equations for auxilia ry functions. Explicit analytical expressions for the profile and parameters of the vector breather oscillating with the sum and difference of the frequencies and wavenumbers are presented. The two-component vector breather and single-component scalar breather of the MBBM equation is compared.
This paper is concerned with pullback attractors of the stochastic p-Laplace equation defined on the entire space R^n. We first establish the asymptotic compactness of the equation in L^2(R^n) and then prove the existence and uniqueness of non-autono mous random attractors. This attractor is pathwise periodic if the non-autonomous deterministic forcing is time periodic. The difficulty of non-compactness of Sobolev embeddings on R^n is overcome by the uniform smallness of solutions outside a bounded domain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا