ﻻ يوجد ملخص باللغة العربية
In this paper, we informally introduce dynamic mind-maps that represent a new approach on the basis of a dynamic construction of connectionist structures during the processing of a data stream. This allows the representation and processing of recursively defined structures and avoids the problem of a more traditional, fixed-size architecture with the processing of input structures of unknown size. For a data stream analysis with association discovery, the incremental analysis of data leads to results on demand. Here, we describe a framework that uses symbolic cells to calculate associations based on transactional data streams as it exists in e.g. bibliographic databases. We follow a natural paradigm of applying simple operations on cells yielding on a mind-map structure that adapts over time.
The explorative mind-map is a dynamic framework, that emerges automatically from the input, it gets. It is unlike a verificative modeling system where existing (human) thoughts are placed and connected together. In this regard, explorative mind-maps
Imagination is one of the most important factors which makes an artistic painting unique and impressive. With the rapid development of Artificial Intelligence, more and more researchers try to create painting with AI technology automatically. However
In our understanding, a mind-map is an adaptive engine that basically works incrementally on the fundament of existing transactional streams. Generally, mind-maps consist of symbolic cells that are connected with each other and that become either str
The Jaccard index is an important similarity measure for item sets and Boolean data. On large datasets, an exact similarity computation is often infeasible for all item pairs both due to time and space constraints, giving rise to faster approximate m
We present data streaming algorithms for the $k$-median problem in high-dimensional dynamic geometric data streams, i.e. streams allowing both insertions and deletions of points from a discrete Euclidean space ${1, 2, ldots Delta}^d$. Our algorithms