Extension Theorems for Paraboloids in the Finite Field Setting


الملخص بالإنكليزية

In this paper we study the $L^p-L^r$ boundedness of the extension operators associated with paraboloids in vector spaces over finite fields.In higher even dimensions, we estimate the number of additive quadruples in the subset $E$ of the paraboloids, that is the number of quadruples $(x,y,z,w) in E^4$ with $x+y=z+w.$ As a result, in higher even dimensions, we improve upon the standard Tomas-Stein exponents which Mockenhaupt and Tao obtained for the boundedness of extension operators for paraboloids by estimating the decay of the Fourier transform of measures on paraboloids. In particular, we obtain the sharp $L^p-L^4$ bound up to endpoints in higher even dimensions. Moreover, we also study the $L^2-L^r$ estimates.In the case when -1 is not a square number in the underlying finite field, we also study the $L^p-L^r$ bound in higher odd dimensions.The discrete Fourier analytic machinery and Gauss sum estimates make an important role in the proof.

تحميل البحث