ﻻ يوجد ملخص باللغة العربية
The general transformation of the product of coherent states $prod_{i=1}^N|alpha_i>$ to the output state $prod_{i=1}^M|beta_i>$ ($N=M$ or $N eq M$), which is realizable with linear optical circuit, is characterized with a linear map from the vector $(alpha^{ast}_1,...,alpha^{ast}_N)$ to $(beta^{ast}_1,...,beta^{ast}_M)$. A correspondence between the transformations of a product of coherent states and those of a single photon state is established with such linear maps. It is convenient to apply this linear transformation method to design any linear optical scheme working with coherent states. The examples include message encoding and quantum database searching. The limitation of manipulating entangled coherent states with linear optics is also discussed.
We show how to implement several continuous-variable coherent protocols with linear optics. Noise can accumulate when implementing each coherent protocol with realistic optical devices. Our analysis bounds the level of noise accumulation. We highligh
Quantum state teleportation of optical number states is conspicuously absent from the list of experimental milestones achieved to date. Here we demonstrate analytically a teleportation scheme with fidelity $100%$ for optical number states of arbitrar
In this survey, various generalisations of Glauber-Sudarshan coherent states are described in a unified way, with their statistical properties and their possible role in non-standard quantisations of the classical electromagnetic field. Some statisti
Boson sampling is a specific quantum computation, which is likely hard to implement efficiently on a classical computer. The task is to sample the output photon number distribution of a linear optical interferometric network, which is fed with single
We investigate which pure states of $n$ photons in $d$ modes can be transformed into each other via linear optics, without post-selection. In other words, we study the local unitary (LU) equivalence classes of symmetric many-qudit states. Writing our