ﻻ يوجد ملخص باللغة العربية
In this paper we review some properties for the evolving wormhole solution of Einstein equations coupled with nonlinear electrodynamics. We integrate the geodesic equations in the effective geometry obeyed by photons; we check out the weak field limit and find the traversability conditions. Then we analyze the case when the lagrangian depends on two electromagnetic invariants and it turns out that there is not a more general solution within the assumed geometry.
In this work, we explore the possibility of evolving (2+1) and (3+1)-dimensional wormhole spacetimes, conformally related to the respective static geometries, within the context of nonlinear electrodynamics. For the (3+1)-dimensional spacetime, it is
We explore the possibility of dynamic wormhole geometries, within the context of nonlinear electrodynamics. The Einstein field equation imposes a contracting wormhole solution and the obedience of the weak energy condition. Furthermore, in the presen
The current interests in the universe motivate us to go beyond Einsteins General theory of relativity. One of the interesting proposals comes from a new class of teleparallel gravity named symmetric teleparallel gravity, i.e., $f(Q)$ gravity, where t
The measurement of the epicyclic frequencies is a widely used astrophysical technique to infer information on a given self-gravitating system and on the related gravity background. We derive their explicit expressions in static and spherically symmet
In this paper we study the possibility of having a wormhole (WH) as a candidate for the Sgr A$^star$ central object and test this idea by constraining their geometry using the motion of S2 star and the reconstructed shadow images. In particular, we c