ترغب بنشر مسار تعليمي؟ اضغط هنا

Wide-Field Chandra X-Ray Observations of AGN in Abell 85 & Abell 754

149   0   0.0 ( 0 )
 نشر من قبل Gregory Sivakoff
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To better understand the mechanism or mechanisms that lead to AGN activity today, we measure the X-ray AGN fraction in a new sample of nearby clusters and examine how it varies with galaxy properties, projected cluster-centric radius, and cluster velocity dispersion. We present new wide-field Chandra X-ray Observatory observations of Abell 85, Abell 754 and the background cluster Abell 89B out to their virial radii. Out of seventeen X-ray sources associated with galaxies in these clusters, we classify seven as X-ray AGN with L_{X,B} > 10^{41} erg/s. Only two of these would be classified as AGN based on their optical spectra. We combine these observations with archival data to create a sample of X-ray AGN from six z < 0.08 clusters and find that 3.4+1.1/-0.8% of M_R < -20 galaxies host X-ray AGN with L_{X,B} > 10^{41} erg/s. We find that more X-ray AGN are detected in more luminous galaxies and attribute this to larger spheriods in more luminous galaxies and increased sensitivity to lower Eddington-rate accretion from black holes in those spheroids. At a given X-ray luminosity limit, more massive black holes can be accreting less efficiently, yet still be detected. If interactions between galaxies are the principal drivers of AGN activity, then the AGN fraction should be higher in lower velocity dispersion clusters and the outskirts of clusters. However, the tendency of the most massive and early-type galaxies to lie in the centers of the richest clusters could dilute such trends. While we find no variation in the AGN fraction with projected cluster-centric radius, we do find that the AGN fraction increases significantly from 2.6+1.0/-0.8% in rich clusters to 10.0+6.2/-4.3% in those with lower velocity dispersions.



قيم البحث

اقرأ أيضاً

We present a long BeppoSAX observation of Abell 754 that reports a nonthermal excess with respect to the thermal emission at energies greater than ~45 keV. A VLA radio observation at 1.4 GHz definitely confirms the existence of diffuse radio emission in the central region of the cluster, previously suggested by images at 74 and 330 MHz (Kassim et al 2001), and reports additional features. Besides, our observation determines a steeper radio halo spectrum in the 330-1400 MHz frequency range with respect to the spectrum detected at lower frequencies, indicating the presence of a spectral cutoff. The presence of a radio halo in A754, considered the prototype of a merging cluster, reinforces the link between formation of Mpc-scale radio regions and very recent or current merger processes. The radio results combined with the hard X-ray excess detected by BeppoSAX give information on the origin of the electron population responsible for nonthermal phenomena in galaxy clusters. We discuss also the possibility that 26W20, a tailed radio galaxy with BL Lac characteristics located in the field of view of the PDS, could be responsible for the observed nonthermal hard X-ray emission.
We have analyzed the Chandra, BeppoSax, and ROSAT observations of Abell 754 and report evidence of a soft, diffuse X-ray component. The emission is peaked in the cluster center and is detected out to 8 from the X-ray center. Fitting a thermal model t o the combined BeppoSax and PSPC spectra show excess emission below 1 keV in the PSPC and above 100 keV in the BeppoSax PDS. The source 26W20 is in the field of view of the PDS. The addition of a powerlaw with the spectral parameters measured by Silverman et al. (1998) for 26W20 successfully models the hard component in the PDS. The remaining excess soft emission can be modeled by either a low temperature, 0.75 - 1.03 keV component, or by a powerlaw with a steep spectral index, 2.3. Addition of a second thermal component model provides a much better fit to the data than does the addition of a non-thermal component. The Chandra temperature map does not show any region cooler than 6.9 keV within the region where the cool component was detected. Simulations of the emission from embedded groups were performed and compared with the Chandra temperature map which show groups are a plausible source of ~1 keV emission. The cool component is centrally peaked in the cluster and the gas density and temperature are relatively high arguing against the WHIM as the source of the X-ray emission. X-ray emission from elliptical galaxies is not high enough to provide the total cool component luminosity, 7.0x10^43 ergs s^-1. The peak of the cool component is located between the low frequency radio halos arguing against a non-thermal interpretation for the emission. We conclude that emission from embedded groups is the most likely origin of the cool component in Abell 754.
We report the first Chandra detection of emission out to the virial radius in the cluster Abell 1835 at z=0.253. Our analysis of the soft X-ray surface brightness shows that emission is present out to a radial distance of 10 arcmin or 2.4 Mpc, and th e temperature profile has a factor of ten drop from the peak temperature of 10 keV to the value at the virial radius. We model the Chandra data from the core to the virial radius and show that the steep temperature profile is not compatible with hydrostatic equilibrium of the hot gas, and that the gas is convectively unstable at the outskirts. A possible interpretation of the Chandra data is the presence of a second phase of warm-hot gas near the clusters virial radius that is not in hydrostatic equilibrium with the clusters potential. The observations are also consistent with an alternative scenario in which the gas is significantly clumped at large radii.
We use Chandra data to derive a detailed gas temperature map of the nearby, hot, merging galaxy cluster A754. Combined with the X-ray and optical images, the map reveals a more complex merger geometry than previously thought, possibly involving more than two subclusters or a cool gas cloud sloshing independently from its former host subcluster. In the cluster central region, we detect spatial variations of the gas temperature on all linear scales, from 100 kpc (the map resolution) and up, which likely remain from a merger shock passage. These variations are used to derive an upper limit on effective thermal conductivity on a 100 kpc scale, which is at least an order of magnitude lower than the Spitzer value. This constraint pertains to the bulk of the intracluster gas, as compared to the previously reported estimates for cold fronts (which are rather peculiar sites). If the conductivity in a tangled magnetic field is at the recently predicted higher values (i.e., about 1/5 of the Spitzer value), the observed suppression can be achieved, for example, if the intracluster gas consists of magnetically isolated domains.
Filaments of the cosmic web have long been associated with the threadlike structures seen in galaxy redshift surveys. However, despite their baryon content being dominated by hot gas, these filaments have been an elusive target for X-ray observations . Recently, detections of filaments in very deep (2.4 Msec) observations with Chandra were reported around Abell 133 (z=0.0559). To verify these claims, we conducted a multi-object spectrographic campaign on the Baade 6.5m telescope around Abell 133; this resulted in a catalog of ${sim}3000$ new redshift measurements, of which 254 are of galaxies near the cluster. We investigate the kinematic state of Abell 133 and identify the physical locations of filamentary structure in the galaxy distribution. Contrary to previous studies, we see no evidence that Abell 133 is dynamically disturbed; we reject the hypothesis that there is a kinematically distinct subgroup (p=0.28) and find no velocity offset between the central galaxy and the cluster ($textrm{Z}_textrm{score}=0.041^{+0.111}_{-0.106}$). The spatial distribution of galaxies traces the X-ray filaments, as confirmed by angular cross correlation with a significance of ${sim}5sigma$. A similar agreement is found in the angular density distribution, where two X-ray structures have corresponding galaxy enhancements. We also identify filaments in the large-scale structure of galaxies; these filaments approach the cluster from the direction the X-ray structures are seen. While more members between $textrm{R}_{200}$ and $2timestextrm{R}_{200}$ are required to clarify which large scale filaments connect to the X-ray gas, we argue that this is compelling evidence that the X-ray emission is indeed associated with cosmic filaments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا