ﻻ يوجد ملخص باللغة العربية
If light hidden sector photons exist, they could be produced through kinetic mixing with solar photons in the eV energy range. We propose to search for this hypothetical hidden photon flux with the Super-Kamiokande and/or upgraded CAST detectors. The proposed experiments are sensitive to mixing strengths as small as 10^-9 for hidden photon masses in the sub eV region and, in the case of non-observation, would improve limits recently obtained from photon regeneration laser experiments in this mass region.
Hidden U(1) gauge symmetries are common to many extensions of the Standard Model proposed to explain dark matter. The hidden gauge vector bosons of such extensions may mix kinetically with Standard Model photons, providing a means for electromagnetic
A search for neutron-antineutron ($n-bar{n}$) oscillation was undertaken in Super-Kamiokande using the 1489 live-day or $2.45 times 10^{34}$ neutron-year exposure data. This process violates both baryon and baryon minus lepton numbers by an absolute
GUT monopoles captured by the Suns gravitation are expected to catalyze proton decays via the Callan-Rubakov process. In this scenario, protons, which initially decay into pions, will ultimately produce u_{e}, u_{mu} and bar{ u}_{mu}. After undergo
The hidden sector photon is a weakly interacting hypothetical particle with sub-eV mass that kinetically mixes with the photon. We describe a microwave frequency light shining through a wall experiment where a cryogenic resonant microwave cavity is u
The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using 3He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with 4He. Wit