ﻻ يوجد ملخص باللغة العربية
In this paper we investigate the equilibrium self-gravitating radiation in higher dimensional, plane symmetric anti-de Sitter space. We find that there exist essential differences from the spherically symmetric case: In each dimension ($dgeq 4$), there are maximal mass (density), maximal entropy (density) and maximal temperature configurations, they do not appear at the same central energy density; the oscillation behavior appearing in the spherically symmetric case, does not happen in this case; and the mass (density), as a function of the central energy density, increases first and reaches its maximum at a certain central energy density and then decreases monotonically in $ 4le d le 7$, while in $d geq 8$, besides the maximum, the mass (density) of the equilibrium configuration has a minimum: the mass (density) first increases and reaches its maximum, then decreases to its minimum and then increases to its asymptotic value monotonically. The reason causing the difference is discussed.
We feed a black hole on a self-gravitating radiation and observe what happens during the process. Considering a spherical shell of radiation, we show that the contribution of self-gravity makes the thermodynamic interaction through the bottom of the
We consider a model involving a self-interacting complex scalar field minimally coupled to gravity and emphasize the cylindrically symmetric classical solutions. A general ansatz is performed which transforms the field equations into a system of diff
The BTZ black hole belongs to a family of locally three-dimensional anti-de Sitter (AdS$_3$) spacetimes labeled by their mass $M$ and angular momentum $J$. The case $M ell geq |J|$, where $ell$ is the anti-de Sitter radius, provides the black hole. E
We study the self-gravitating stars with a linear equation of state, $P=a rho$, in AdS space, where $a$ is a constant parameter. There exists a critical dimension, beyond which the stars are always stable with any central energy density; below which
In this note, I describe an attempt to construct a phenomenological gravitational model at the boundary of the AdS manifold from the variation of boundary terms in the gravitational action. I find that for an AdS vacuum in the bulk, geometric constra