Nonlinear Photoluminescence Excitation Spectroscopy of Carbon Nanotubes: Exploring the Upper Density Limit of One-Dimensional Excitons


الملخص بالإنكليزية

We have studied emission properties of high-density excitons in single-walled carbon nanotubes through nonlinear photoluminescence excitation spectroscopy. As the excitation intensity was increased, all emission peaks arising from different chiralities showed clear saturation in intensity. Each peak exhibited a saturation value that was independent of the excitation wavelength, indicating that there is an upper limit on the exciton density for each nanotube species. We developed a theoretical model based on exciton diffusion and exciton-exciton annihilation that successfully reproduced the saturation behavior, allowing us to estimate exciton densities. These estimated densities were found to be still substantially smaller than the expected Mott density even in the saturation regime, in contrast to conventional semiconductor quantum wires.

تحميل البحث