ترغب بنشر مسار تعليمي؟ اضغط هنا

Groebner-Shirshov Bases: Some New Results

300   0   0.0 ( 0 )
 نشر من قبل Yuqun Chen
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this survey article, we report some new results of Groebner-Shirshov bases, including new Composition-Diamond lemmas, applications of some known Composition-Diamond lemmas and content of some expository papers.



قيم البحث

اقرأ أيضاً

In this paper, we define the Grobner-Shirshov basis for a dialgebra. The Composition-Diamond lemma for dialgebras is given then. As results, we give Grobner-Shirshov bases for the universal enveloping algebra of a Leibniz algebra, the bar extension o f a dialgebra, the free product of two dialgebras, and Clifford dialgebra. We obtain some normal forms for algebras mentioned the above.
187 - L. A. Bokut , Yuqun Chen 2008
In this paper, we review Shirshovs method for free Lie algebras invented by him in 1962 which is now called the Groebner-Shirshov bases theory.
124 - Yuqun Chen , Chanyan Zhong 2008
In this paper, we prove that two-generator one-relator groups with depth less than or equal to 3 can be effectively embedded into a tower of HNN-extensions in which each group has the effective standard normal form. We give an example to show how to deal with some general cases for one-relator groups. By using the Magnus method and Composition-Diamond Lemma, we reprove the G. Higman, B. H. Neumann and H. Neumanns embedding theorem.
In this paper, we establish the Composition-Diamond lemma for associative algebras with multiple linear operators. As applications, we obtain Groebner-Shirshov bases of free Rota-Baxter algebra, $lambda$-differential algebra and $lambda$-differential Rota-Baxter algebra, respectively. In particular, linear bases of these three free algebras are respectively obtained, which are essentially the same or similar to those obtained by Ebrahimi-Fard and Guo, and Guo and Keigher recently by using other methods.
A new construction of a free inverse semigroup was obtained by Poliakova and Schein in 2005. Based on their result, we find a Groebner-Shirshov basis of a free inverse semigroup relative to the deg-lex order of words. In particular, we give the (uniq ue and shortest) Groebner-Shirshov normal forms in the classes of equivalent words of a free inverse semigroup together with the Groebner-Shirshov algorithm to transform any word to its normal form.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا