ﻻ يوجد ملخص باللغة العربية
Quantum bialgebras derivable from Uq(sl2) which contain idempotents and von Neumann regular Cartan-like generators are introduced and investigated. Various types of antipodes (invertible and von Neumann regular) on these bialgebras are constructed, which leads to a Hopf algebra structure and a von Neumann-Hopf algebra structure, respectively. For them, explicit forms of some particular R-matrices (also, invertible and von Neumann regular) are presented, and the latter respects the Pierce decomposition.
In this article, we prove various smooth uncertainty principles on von Neumann bi-algebras, which unify numbers of uncertainty principles on quantum symmetries, such as subfactors, and fusion bi-algebras etc, studied in quantum Fourier analysis. We a
We prove a version of the data-processing inequality for the relative entropy for general von Neumann algebras with an explicit lower bound involving the measured relative entropy. The inequality, which generalizes previous work by Sutter et al. on f
We discussed twisted quantum deformations of D=4 Lorentz and Poincare algebras. In the case of Poincare algebra it is shown that almost all classical r-matrices of S.Zakrzewski classification can be presented as a sum of subordinated r-matrices of Ab
We prove the existence of a universal recovery channel that approximately recovers states on a v. Neumann subalgebra when the change in relative entropy, with respect to a fixed reference state, is small. Our result is a generalization of previous re
Flat modules play an important role in the study of the category of modules over rings and in the characterization of some classes of rings. We study the e-flatness for semimodules introduced by the first author using his new notion of exact sequence