ترغب بنشر مسار تعليمي؟ اضغط هنا

The Mid-Infrared Fundamental Plane of Early-Type Galaxies

478   0   0.0 ( 0 )
 نشر من قبل Hyunsung David Jun
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Three observables of early-type galaxies - size ($r_{e}$), surface brightness ($I_{e}$), and velocity dispersion ($sigma_{0}$) - form a tight planar correlation known as the fundamental plane (FP), which has provided great insights into the galaxy formation and the evolution processes. However, the FP has been found to be tilted against the simple virial expectation, prompting debates on its origin. In order to investigate the contribution of systematic stellar population variation to the FP tilt, we study here the FP relations of early-type galaxies in mid-infrared (MIR) which may represent the stellar mass well. We examined the wavelength dependence of the FP coefficients, $a$ and $b$ in $log r_{e}= alogsigma_{0} + blog< I >_{e} + c$, using a sample of 56 early-type galaxies for which visible (V-band), near-infrared (K-band), and MIR (Spitzer IRAC, 3.6--8.0$mu$m) data are available. We find that the coefficient $a$ increases as a function of wavelength as $da/dlambda=0.11pm0.04mu m^{-1}$, while the coefficient $b$ reaches the closest to -1 at 3.6--5.8$mu$m. When applied to the visible FP coefficients derived from a larger sample of nearby early-type galaxies, we get the FP relation with $(a,b) simeq $(1.6--1.8,-0.9) at 3.6$mu$m. Our result suggests that the stellar population effect can explain more than half of the FP tilt, closing the gap between the virial expectation and the optical FP. The reduction in the FP tilt is reflected in the dynamical mass-to-light ratio, $M_{dyn}/L$, dependence on $L$ which decreases toward 3.6--5.8$mu$m, suggesting that the MIR light better represents mass than the shorter wavelengths.



قيم البحث

اقرأ أيضاً

64 - Fatma M. Reda 2005
Here we present new measurements of effective radii, surface brightnesses and internal velocity dispersions for 23 isolated early-type galaxies. The photometric properties are derived from new multi-colour imaging of 10 galaxies, whereas the central kinematics for 7 galaxies are taken from forthcoming work by Hau & Forbes. These are supplemented with data from the literature. We reproduce the colour-magnitude and Kormendy relations and strengthen the result of Paper I that isolated galaxies follow the same photometric relations as galaxies in high density environments. We also find that some isolated galaxies reveal fine structure indicative of a recent merger while others appear undisturbed. We examine the Fundamental Plane in both traditional R_e, mu_e and sigma space and also kappa-space. Most isolated galaxies follow the same Fundamental Plane tilt and scatter for galaxies in high density environments. However, a few galaxies notably deviate from the plane in the sense of having smaller M/L ratios. This can be understood in terms of their younger stellar populations, which are presumably induced by a gaseous merger. Overall, isolated galaxies have similar properties to those in roups and clusters with a slight enhancement in the frequency of recent mergers/interactions.
We determine the near-infrared Fundamental Plane (FP) for $sim10^4$ early-type galaxies in the 6dF Galaxy Survey (6dFGS). We fit the distribution of central velocity dispersion, near-infrared surface brightness and half-light radius with a three-dime nsional Gaussian model using a maximum likelihood method. For the 6dFGS $J$ band sample we find a FP with $R_{e}$,$propto$,$sigma_0^{1.52pm0.03}I_{e}^{-0.89pm0.01}$, similar to previous near-IR determinations and consistent with the $H$ and $K$ band Fundamental Planes once allowance is made for differences in mean colour. The overall scatter in $R_e$ about the FP is $sigma_r$,=,29%, and is the quadrature sum of an 18% scatter due to observational errors and a 23% intrinsic scatter. Because of the distribution of galaxies in FP space, $sigma_r$ is not the distance error, which we find to be $sigma_d$,=,23%. Using group richness and local density as measures of environment, and morphologies based on visual classifications, we find that the FP slopes do not vary with environment or morphology. However, for fixed velocity dispersion and surface brightness, field galaxies are on average 5% larger than galaxies in higher-density environments, and the bulges of early-type spirals are on average 10% larger than ellipticals and lenticulars. The residuals about the FP show significant trends with environment, morphology and stellar population. The strongest trend is with age, and we speculate that age is the most important systematic source of offsets from the FP, and may drive the other trends through its correlations with environment, morphology and metallicity.
A magnitude limited sample of nearly 9000 early-type galaxies, in the redshift range 0.01 < z < 0.3, was selected from the Sloan Digital Sky Survey using morphological and spectral criteria. The Fundamental Plane relation in this sample is R_o ~ sigm a^{1.49pm 0.05} I_o^{-0.75pm 0.01} in the r* band. It is approximately the same in the g*, i* and z* bands. Relative to the population at the median redshift in the sample, galaxies at lower and higher redshifts have evolved only little. If the Fundamental Plane is used to quantify this evolution then the apparent magnitude limit can masquerade as evolution; once this selection effect has been accounted for, the evolution is consistent with that of a passively evolving population which formed the bulk of its stars about 9 Gyrs ago. One of the principal advangtages of the SDSS sample over previous samples is that the galaxies in it lie in environments ranging from isolation in the field to the dense cores of clusters. The Fundamental Plane shows that galaxies in dense regions are slightly different from galaxies in less dense regions.
We present a complete analysis of the Fundamental Plane of early-type galaxies (ETGs) in the nearby universe. The sample, as defined in paper I, comprises 39,993 ETGs located in environments covering the entire domain in local density (from field to cluster). We derive the FP of ETGs in the grizYJHK wavebands with a detailed discussion on fitting procedure, bias due to selection effects and bias due to correlated errors on r_e and mue as key factors in obtaining meaningful FP coefficients. Studying the Kormendy relation we find that its slope varies from g (3.44+-0.04) to K (3.80+-0.02) implying that smaller size ETGs have a larger ratio of optical/NIR radii than galaxies with larger re. We also examine the Faber-Jackson relation and find that its slope is similar for all wavebands, within the uncertainties, with a mean value of 0.198+-0.007. The variation of the FP coefficients for the magnitude selected sample from g through K amounts to 11%, negligible, and 10%, respectively. We find that the tilt of the FP becomes larger for higher Sersic index and larger axis ratios, independent of the waveband we measured the FP variables. This suggests that these variations are likely related to structural and dynamical differences of galaxian properties. We also show that the current semi-analytical models of galaxy formation reproduce very well the variation of age and metallicity of the stellar populations present in massive ETGs as a function of the stellar mass in these systems. In particular, we find that massive ETGs have coeval stellar pops with age varying only by a few % per decade in mass, while metallicity increases with stellar mass by 23% per mass decade.
209 - J. B. Hyde , M. Bernardi 2009
From a sample of ~50000 early-type galaxies from the SDSS, we measured the traditional Fundamental Plane in four bands. We then replaced luminosity with stellar mass, and measured the stellar mass FP. The FP steepens slightly as one moves from shorte r to longer wavelengths: the orthogonal fit has slope 1.40 in g and 1.47 in z. The FP is thinner at longer wavelengths: scatter is 0.062 dex in g, 0.054 dex in z. The scatter is larger at small galaxy sizes/masses; at large masses measurement errors account for essentially all of the observed scatter. The FP steepens further when luminosity is replaced with stellar mass, to slope ~ 1.6. The intrinsic scatter also reduces further, to 0.048 dex. Since color and stellar mass-to-light ratio are closely related, this explains why color can be thought of as the fourth FP parameter. However, the slope of the stellar mass FP remains shallower than the value of 2 associated with the virial theorem. This is because the ratio of dynamical to stellar mass increases at large masses as M_d^0.17. The face-on view of the stellar mass kappa-space suggests that there is an upper limit to the stellar density for a given dynamical mass, and this decreases at large masses: M_*/R_e^3 ~ M_d^-4/3. We also study how the estimated coefficients a and b of the FP are affected by other selection effects (e.g. excluding small sigma biases a high; excluding fainter L biases a low). These biases are seen in FPs which have no intrinsic curvature, so the observation that a and b scale with L and sigma is not, by itself, evidence that the Plane is warped. We show that the FP appears to curve sharply downwards at the small mass end, and more gradually downwards towards larger masses. Whereas the drop at small sizes is real, most of the latter effect is due to correlated errors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا