ﻻ يوجد ملخص باللغة العربية
Since the discovery of copper oxide superconductor in 1986 [1], extensive efforts have been devoted to the search of new high-Tc superconducting materials, especially high-Tc systems other than cuprates. The recently discovered quaternary superconductor La[O1-xFx]FeAs with the superconducting critical transition Tc of 26 K [2], which has a much simple layered structure compared with cuprates, has attracted quick enthusiasm and is going to become a new high-Tc system [3-6]. Here we report the discovery of bulk superconductivity in the praseodymium-arsenide oxides Pr[O1-xFx]FeAs with an onset drop of resistivity as high as 52 K, and the unambiguous zero-resistivity and Meissner transition at low temperature, which will place these quaternary compounds to another high-Tc superconducting system explicitly.
Here we report the superconductivity in the iron-based oxyarsenide Sm[O1-xFx]FeAs, with the onset resistivity transition temperature at 55.0 K and Meissner transition at 54.6 K. This compound has the same crystal structure as LaOFeAs with shrunk crys
The recently discovered quaternary arsenide oxide superconductor La[O1-xFx]FeAs with the superconducting critical transition temperature (Tc) of 26 K [1], has been quickly expanded to another high-Tc superconducting system beyond copper oxides by the
In high-transition temperature (high-Tc) copper oxides, it is generally believed that antiferromagnetism plays a fundamental role in the superconducting mechanism because superconductivity occurs when mobile electrons or holes are doped into the anti
Here we report the superconductivity in the LaFeAsO1-xFx system prepared by high pressure synthesis. The highest onset superconducting transition temperature (Tc) in this La-based system is 41.0 K with the nominal composition of LaFeAsO1-xFx (x = 0.6
Raman spectra have been measured on iron-based quaternary CeO$_{1-x}$F$_x$FeAs and LaO$_{1-x}$F$_x$FeAs with varying fluorine doping at room temperatures. A group analysis has been made to clarify the optical modes. Based on the first principle calcu