ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Possible resolution of the Casimir force finite temperature correction controversies

93   0   0.0 ( 0 )
 نشر من قبل Galina L. Klimchitskaya
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recently suggested modification of the transverse electric contribution to the Lifshitz formula (S. K. Lamoreaux, arXiv:0801.1283) is discussed. We show that this modification is inconsistent with the data of two precise experiments, and violates the Nernst heat theorem. The preprints suggestion concerning the resolution of the apparent violation of the Third Law of Thermodynamics is shown to be incorrect.



قيم البحث

اقرأ أيضاً

119 - S. C. Lim , L. P. Teo 2008
We study the zero and finite temperature Casimir force acting on a perfectly conducting piston with arbitrary cross section moving inside a closed cylinder with infinitely permeable walls. We show that at any temperature, the Casimir force always ten ds to move the piston away from the walls and towards its equilibrium position. In the case of rectangular piston, exact expressions for the Casimir force are derived. In the high temperature regime, we show that the leading term of the Casimir force is linear in temperature and therefore the Casimir force has a classical limit. Due to duality, all these result also hold for an infinitely permeable piston moving inside a closed cylinder with perfectly conducting walls.
The low-temperature asymptotic expressions for the Casimir interaction between two real metals described by Leontovich surface impedance are obtained in the framework of thermal quantum field theory. It is shown that the Casimir entropy computed usin g the impedance of infrared optics vanishes in the limit of zero temperature. By contrast, the Casimir entropy computed using the impedance of the Drude model attains at zero temperature a positive value which depends on the parameters of a system, i.e., the Nernst heat theorem is violated. Thus, the impedance of infrared optics withstands the thermodynamic test, whereas the impedance of the Drude model does not. We also perform a phenomenological analysis of the thermal Casimir force and of the radiative heat transfer through a vacuum gap between real metal plates. The characterization of a metal by means of the Leontovich impedance of the Drude model is shown to be inconsistent with experiment at separations of a few hundred nanometers. A modification of the impedance of infrared optics is suggested taking into account relaxation processes. The power of radiative heat transfer predicted from this impedance is several times less than previous predictions due to different contributions from the transverse electric evanescent waves. The physical meaning of low frequencies in the Lifshitz formula is discussed. It is concluded that new measurements of radiative heat transfer are required to find out the adequate description of a metal in the theory of electromagnetic fluctuations.
111 - John A. Sidles 1997
It is predicted that in force microscopy the quantum fluctuations responsible for the Casimir force can be directly observed as temperature-independent force fluctuations having spectral density $9pi/(40ln(4/e)) hbar delta k$, where $hbar$ is Plancks constant and $delta k$ is the observed change in spring constant as the microscope tip approaches a sample. For typical operating parameters the predicted force noise is of order $10^{-18}$ Newton in one Hertz of bandwidth. The Second Law is respected via the fluctuation-dissipation theorem. For small tip-sample separations the cantilever damping is predicted to increase as temperature is reduced, a behavior that is reminiscent of the Kondo effect.
122 - S.K. Lamoreaux 2010
A new systematic correction for Casimir force measurements is proposed and applied to the results of an experiment that was performed more than a decade ago. This correction brings the experimental results into good agreement with the Drude model of the metallic plates permittivity. The systematic is due to time-dependent fluctuations in the distance between the plates caused by mechanical vibrations or tilt, or position measurement uncertainty, and is similar to the correction for plate roughness.
In a recent Comment, Decca et al. [Phys. Rev. A 79, 026101 (2009); arXiv:0809.3576] discussed the origin of the anomalies recently reported by us in Phys. Rev. A 78, 036102(R) (2008); arXiv:0812.0028 . Here we restate our view, corroborated by their considerations, that quantitative geometrical and electrostatic characterizations of the conducting surfaces (a topic not discussed explicitly in the literature until very recently) are critical for the assessment of precision and accuracy of the demonstration of the Casimir force and for deriving meaningful limits on the existence of Yukawian components possibly superimposed to the Newtonian gravitational interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا