ﻻ يوجد ملخص باللغة العربية
This paper considers state estimation of linear systems using analog amplify and forwarding with multiple sensors, for both multiple access and orthogonal access schemes. Optimal state estimation can be achieved at the fusion center using a time varying Kalman filter. We show that in many situations, the estimation error covariance decays at a rate of $1/M$ when the number of sensors $M$ is large. We consider optimal allocation of transmission powers that 1) minimizes the sum power usage subject to an error covariance constraint and 2) minimizes the error covariance subject to a sum power constraint. In the case of fading channels with channel state information the optimization problems are solved using a greedy approach, while for fading channels without channel state information but with channel statistics available a sub-optimal linear estimator is derived.
Technological advances have made wireless sensors cheap and reliable enough to be brought into industrial use. A major challenge arises from the fact that wireless channels introduce random packet dropouts. Power control and coding are key enabling t
We consider the problem of oblivious transfer (OT) over OFDM and MIMO wireless communication systems where only the receiver knows the channel state information. The sender and receiver also have unlimited access to a noise-free real channel. Using a
In this paper, we investigate the state estimation problem over multiple Markovian packet drop channels. In this problem setup, a remote estimator receives measurement data transmitted from multiple sensors over individual channels. By the method of
A hybrid communication network with a common analog signal and an independent digital data stream as input to each node in a multiple access network is considered. The receiver/base-station has to estimate the analog signal with a given fidelity, and
We consider the problem of minimizing the age of information when a source can transmit status updates over two heterogeneous channels. Our work is motivated by recent developments in 5G mmWave technology, where transmissions may occur over an unreli