ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring B -> tau nu and B_c -> tau nu at the Z peak

416   0   0.0 ( 0 )
 نشر من قبل Stefan Recksiegel
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The measurement of B->tau nu at the B factories provides important constraints on the parameter tan beta/m_H^+- in the context of models with two Higgs doublets. Limits on this decay from e+e- collisions at the Z peak were sensitive to the sum of B->tau nu and B_c->tau nu. Due to the possibly sizeable contribution from B_c->tau nu we suggest that a signal for this combination might be observed if the LEP L3 Collaboration used their total data of ~3.6 10^6 hadronic decays of the Z boson. Moreover, we point out that a future Linear Collider operating at the Z peak (Giga Z option) could constrain tan beta/m_H^+- from the sum of these processes with a precision comparable to that anticipated at proposed high luminosity B factories from B-> tau nu alone.



قيم البحث

اقرأ أيضاً

We evaluate the compositeness effects of tau lepton on the vertex W-tau-nu(tau) in the context of an effective Lagrangian approach. We consider that only the third family is composed and we get the corrections to the non universal lepton coupling g_( tau)/g_(e). As the experimental bounds on non universal lepton couplings in W decays are weak, we find that the excited particles contributions do not give realistic limits on the excited mass, since they lead to Lambda<m*.
We report on analyses of tau lepton decays $tau^- to eta K^- u_{tau}$ and $tau^- to eta pi^- u_{tau}$, with $eta to pi^+ pi^- pi^0$, using 470 fb$^{-1}$ of data from the Babar experiment at PEP-II, collected at center-of-mass energies at and near t he $Upsilon(4S)$ resonance. We measure the branching fraction for the $tau^- to eta K^- u_{tau}$ decay mode, $Br(tau^- to eta K^- u_{tau}) = (1.42pm0.11text{(stat)}pm0.07text{(syst)})times10^{-4}$, and report a 95% confidence level upper limit for the second-class current process $tau^- to eta pi^- u_{tau}$, $Br(tau^- to eta pi^- u_{tau}) < 9.9times10^{-5}$.
The semileptonic decay channel B -> D tau nu is sensitive to the presence of a scalar current, such as that mediated by a charged-Higgs boson. Recently the BaBar experiment reported the first observation of the exclusive semileptonic decay B -> D tau nu, finding an approximately 2-sigma disagreement with the Standard-Model prediction for the ratio R(D)=BR(B->D tau nu)/BR(B->D l nu), where l=e,mu. We compute this ratio of branching fractions using hadronic form factors computed in unquenched lattice QCD and obtain R(D) = 0.316(12)(7), where the errors are statistical and total systematic, respectively. This result is the first Standard-Model calculation of R(D) from ab initio full QCD. Its error is smaller than that of previous estimates, primarily due to the reduced uncertainty in the scalar form factor f_0(q^2). Our determination of R(D) is approximately 1-sigma higher than previous estimates and, thus, reduces the tension with experiment. We also compute R(D) in models with electrically charged scalar exchange, such as the type II two-Higgs doublet model. Once again, our result is consistent with, but approximately 1-sigma higher than, previous estimates for phenomenologically relevant values of the scalar coupling in the type II model. As a byproduct of our calculation, we also present the Standard-Model prediction for the longitudinal polarization ratio P_L (D)= 0.325(4)(3).
208 - E. Richter-Was , Z. Was 2019
In phenomenological preparation for new measurements one searches for the carriers of quality signatures. Often, the first approach quantities may be difficult to measure or to provide sufficiently precise predictions for comparisons. Complexity of necessary details grow with precision. To achieve the goal one can not break the theory principles, and take into account effects which could be ignored earlier. Mixed approach where dominant effects are taken into account with intuitive even simplistic approach was developed. Non dominant corrections were controlled with the help of Monte Carlo simulations. Concept of Optimal Variables was successfully applied for many measurements. New techniques, like Machine Learning, offer solutions to exploit multidimensional signatures. Complementarity of these new and old approaches is studied for the example of Higgs Boson CP-parity measurements in H to tau^+tau^-, tau^pm to nu (3pi)^pm cascade decays.
The recently measured B -> tau nu branching ratio allows to test the Standard Model by probing virtual effects of new heavy particles, such as a charged Higgs boson. The accuracy of the test is currently limited by the experimental error on BR(B -> t au nu) and by the uncertainty on the parameters fB and |Vub|. The redundancy of the Unitarity Triangle fit allows to reduce the error on these parameters and thus to perform a more precise test of the Standard Model. Using the current experimental inputs, we obtain BR(B -> tau nu)_SM = (0.84 +- 0.11)x10^{-4}, to be compared with BR(B -> tau nu)_exp = (1.73 +- 0.34)x10^{-4}. The Standard Model prediction can be modified by New Physics effects in the decay amplitude as well as in the Unitarity Triangle fit. We discuss how to disentangle the two possible contributions in the case of minimal flavour violation at large tan beta and generic loop-mediated New Physics. We also consider two specific models with minimal flavour violation: the Type-II Two Higgs Doublet Model and the Minimal Supersymmetric Standard Model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا