ﻻ يوجد ملخص باللغة العربية
The Blume-Emery-Griffiths spin glass is studied by renormalization-group theory in d=3. The boundary between the ferromagnetic and paramagnetic phases has first-order and two types of second-order segments. This topology includes an inverted tricritical point, first-order transitions replacing second-order transitions as temperature is lowered. The phase diagrams show disconnected spin-glass regions, spin-glass and paramagnetic reentrances, and complete reentrance, where the spin-glass phase replaces the ferromagnet as temperature is lowered for all chemical potentials.
The parallel dynamics of the fully connected Blume-Emery-Griffiths neural network model is studied for arbitrary temperature. By employing a probabilistic signal-to-noise approach, a recursive scheme is found determining the time evolution of the dis
The optimal capacity of a diluted Blume-Emery-Griffiths neural network is studied as a function of the pattern activity and the embedding stability using the Gardner entropy approach. Annealed dilution is considered, cutting some of the couplings ref
The parallel dynamics of the fully connected Blume-Emery-Griffiths neural network model is studied at zero temperature for arbitrary using a probabilistic approach. A recursive scheme is found determining the complete time evolution of the order para
The locations of multicritical points on many hierarchical lattices are numerically investigated by the renormalization group analysis. The results are compared with an analytical conjecture derived by using the duality, the gauge symmetry and the re
We extend the Blume-Emery-Griffiths (BEG) model to a two-component BEG model in order to study 2D systems with two order parameters, such as magnetic superconductors or two-component Bose-Einstein condensates. The model is investigated using Monte Ca