We consider proper colorings of planar graphs embedded in the annulus, such that vertices on one rim can take Q_s colors, while all remaining vertices can take Q colors. The corresponding chromatic polynomial is related to the partition function of a boundary loop model. Using results for the latter, the phase diagram of the coloring problem (with real Q and Q_s) is inferred, in the limits of two-dimensional or quasi one-dimensional infinite graphs. We find in particular that the special role played by Beraha numbers Q=4 cos^2(pi/n) for the usual chromatic polynomial does not extend to the case Q different from Q_s. The agreement with (scarce) existing numerical results is perfect; further numerical checks are presented here.