ﻻ يوجد ملخص باللغة العربية
We investigate the microstructural evolution in a ferroelectric to antiferroelectric phase transition at the morphotropic phase boundary in the Bi(1-x)SmxFeO3 system. Continuous Sm3+ substitution on the A-site induces short-range anti-parallel cation displacements as verified by the appearance of localized 1/4(110) weak spots in selected area electron diffraction patterns for 0.1<x<0.14 samples, and thus onset of antiferroelectricity. Kinetic Monte Carlo simulations confirm that increasing the strength of the anti-parallel interactions (i.e. increasing x) induces a ferroelectric to antiferroelectric transition. For 0.14<x<0.2 antiphase oxygen octahedra tilts induce complete antiferroelectricity.
Recently, based on the phase-field modeling, it was predicted that Hf1-xZrxO2 (HZO) exhibits the morphotropic phase boundary (MPB) in its compositional phase diagram. Here, we investigate the effect of structural changes between tetragonal (t) and or
We report on the discovery of a lead-free morphotropic phase boundary in Sm doped BiFeO3 with a simple perovskite structure using the combinatorial thin film strategy. The boundary is a rhombohedral to pseudo-orthorhombic structural transition which
Materials with formula of A2B2O7 is a famous family with more than 300 compounds, and have abundant properties, like ferroelectric, multiferroic, and photocatalyst properties, etc. Generally, two structures dominate this family, which are pyrochlore
We report neutron inelastic scattering experiments on single crystal PbMg$_{1/3}$Nb$_{2/3}$O$_{3}$ doped with 32% PbTiO$_{3}$, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field $mathbf{E}
Morphotropic phase boundaries (MPBs) show substantial piezoelectric and dielectric responses, which have practical applications. The predicted existence of MPB in HfO2-ZrO2 solid solution thin film has provided a new way to increase the dielectric pr