ﻻ يوجد ملخص باللغة العربية
We present a theoretical study of spin-3/2 hole transport through mesoscopic rings, based on the spherical Luttinger model. The quasi-one-dimensional ring is created in a symmetric two-dimensional quantum well by a singular-oscillator potential for the radial in-plane coordinate. The quantum-interference contribution to the two-terminal ring conductance exhibits an energy-dependent Aharonov-Anandan phase, even though Rashba and Dresselhaus spin splittings are absent. Instead, confinement-induced heavy-hole - light-hole mixing is found to be the origin of this phase, which has ramifications for magneto-transport measurements in gated hole rings.
We have obtained numerically exact results for the spin-related geometric quantum phases that arise in p-type semiconductor ring structures. The interplay between gate-controllable (Rashba) spin splitting and quantum-confinement-induced mixing betwee
Two important features of mesoscopic Aharonov-Bohm (A-B) electronic interferometers are analyzed: decoherence due to coupling with other degrees of freedom and the coupled transport of charge and heat. We first review the principles of decoherence of
Majorana zero modes are leading candidates for topological quantum computation due to non-local qubit encoding and non-abelian exchange statistics. Spatially separated Majorana modes are expected to allow phase-coherent single-electron transport thro
The Josephson current through an Aharonov-Bohm (AB) interferometer, in which a quantum dot (QD) is situated on one arm and a magnetic flux $Phi$ threads through the ring, has been investigated. With the existence of the magnetic flux, the relation of
There is great interest in the development of novel nanomachines that use charge, spin, or energy transport, to enable new sensors with unprecedented measurement capabilities. Electrical and thermal transport in these mesoscopic systems typically inv