Privacy is an increasingly important aspect of data publishing. Reasoning about privacy, however, is fraught with pitfalls. One of the most significant is the auxiliary information (also called external knowledge, background knowledge, or side information) that an adversary gleans from other channels such as the web, public records, or domain knowledge. This paper explores how one can reason about privacy in the face of rich, realistic sources of auxiliary information. Specifically, we investigate the effectiveness of current anonymization schemes in preserving privacy when multiple organizations independently release anonymized data about overlapping populations. 1. We investigate composition attacks, in which an adversary uses independent anonymized releases to breach privacy. We explain why recently proposed models of limited auxiliary information fail to capture composition attacks. Our experiments demonstrate that even a simple instance of a composition attack can breach privacy in practice, for a large class of currently proposed techniques. The class includes k-anonymity and several recent variants. 2. On a more positive note, certain randomization-based notions of privacy (such as differential privacy) provably resist composition attacks and, in fact, the use of arbitrary side information. This resistance enables stand-alone design of anonymization schemes, without the need for explicitly keeping track of other releases. We provide a precise formulation of this property, and prove that an important class of relaxations of differential privacy also satisfy the property. This significantly enlarges the class of protocols known to enable modular design.