ترغب بنشر مسار تعليمي؟ اضغط هنا

Sources of contamination to weak lensing three-point statistics: constraints from N-body simulations

186   0   0.0 ( 0 )
 نشر من قبل Elisabetta Semboloni
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the impact of the observed correlation between a galaxies shape and its surrounding density field on the measurement of third order weak lensing shear statistics. Using numerical simulations, we estimate the systematic error contribution to a measurement of the third order moment of the aperture mass statistic (GGG) from three-point intrinsic ellipticity correlations (III), and the three-point coupling between the weak lensing shear experienced by distant galaxies and the shape of foreground galaxies (GGI and GII). We find that third-order weak lensing statistics are typically more strongly contaminated by these physical systematics compared to second-order shear measurements, contaminating the measured three-point signal for moderately deep surveys with a median redshift z_m ~ 0.7 by ~ 15%. It has been shown that accurate photometric redshifts will be crucial to correct for this effect, once a model and the redshift dependence of the effect can be accurately constrained. To this end we provide redshift-dependent fitting functions to our results and propose a new tool for the observational study of intrinsic galaxy alignments. For a shallow survey with z_m ~ 0.4 we find III to be an order of magnitude larger than the expected cosmological GGG shear signal. Compared to the two-point intrinsic ellipticity correlation which is similar in amplitude to the two-point shear signal at these survey depths, third order statistics therefore offer a promising new way to constrain models of intrinsic galaxy alignments. Early shallow data from the next generation of very wide weak lensing surveys will be optimal for this type of study.



قيم البحث

اقرأ أيضاً

We use weak lensing data from the Hubble Space Telescope COSMOS survey to measure the second- and third-moments of the cosmic shear field, estimated from about 450,000 galaxies with average redshift <z> ~ 1.3. We measure two- and three-point shear st atistics using a tree-code, dividing the signal in E, B and mixed components. We present a detection of the third-order moment of the aperture mass statistic and verify that the measurement is robust against systematic errors caused by point spread function (PSF) residuals and by the intrinsic alignments between galaxies. The amplitude of the measured three-point cosmic shear signal is in very good agreement with the predictions for a WMAP7 best-fit model, whereas the amplitudes of potential systematics are consistent with zero. We make use of three sets of large Lambda CDM simulations to test the accuracy of the cosmological predictions and to estimate the influence of the cosmology-dependent covariance. We perform a likelihood analysis using the measurement and find that the Omega_m-sigma_8 degeneracy direction is well fitted by the relation: sigma_8 (Omega_m/0.30)^(0.49)=0.78+0.11/-0.26. We present the first measurement of a more generalised three-point shear statistic and find a very good agreement with the WMAP7 best-fit cosmology. The cosmological interpretation of this measurement gives sigma_8 (Omega_m/0.30)^(0.46)=0.69 +0.08/-0.14. Furthermore, the combined likelihood analysis of this measurement with the measurement of the second order moment of the aperture mass improves the accuracy of the cosmological constraints, showing the high potential of this combination of measurements to infer cosmological constraints.
We study the statistics of peaks in a weak lensing reconstructed mass map of the first 450 square degrees of the Kilo Degree Survey. The map is computed with aperture masses directly applied to the shear field with an NFW-like compensated filter. We compare the peak statistics in the observations with that of simulations for various cosmologies to constrain the cosmological parameter $S_8 = sigma_8 sqrt{Omega_{rm m}/0.3}$, which probes the ($Omega_{rm m}, sigma_8$) plane perpendicularly to its main degeneracy. We estimate $S_8=0.750pm0.059$, using peaks in the signal-to-noise range $0 leq {rm S/N} leq 4$, and accounting for various systematics, such as multiplicative shear bias, mean redshift bias, baryon feedback, intrinsic alignment, and shear-position coupling. These constraints are $sim25%$ tighter than the constraints from the high significance peaks alone ($3 leq {rm S/N} leq 4$) which typically trace single-massive halos. This demonstrates the gain of information from low-S/N peaks. However we find that including ${rm S/N} < 0$ peaks does not add further information. Our results are in good agreement with the tomographic shear two-point correlation function measurement in KiDS-450. Combining shear peaks with non-tomographic measurements of the shear two-point correlation functions yields a $sim20%$ improvement in the uncertainty on $S_8$ compared to the shear two-point correlation functions alone, highlighting the great potential of peaks as a cosmological probe.
Forthcoming experiments will enable us to determine tomographic shear spectra at a high precision level. Most predictions about them have until now been biased on algorithms yielding the expected linear and non-linear spectrum of density fluctuations . Even when simulations have been used, so-called Halofit (Smith et al 2003) predictions on fairly large scales have been needed. We wish to go beyond this limitation. We perform N-body and hydrodynamical simulations within a sufficiently large cosmological volume to allow a direct connection between simulations and linear spectra. While covering large length-scales, the simulation resolution is good enough to allow us to explore the high-l harmonics of the cosmic shear (up to l ~ 50000), well into the domain where baryon physics becomes important. We then compare shear spectra in the absence and in presence of various kinds of baryon physics, such as radiative cooling, star formation, and supernova feedback in the form of galactic winds. We distinguish several typical properties of matter fluctuation spectra in the different simulations and test their impact on shear spectra. We compare our outputs with those obtainable using approximate expressions for non--linear spectra, and identify substantial discrepancies even between our results and those of purely N-body results. Our simulations and the treatment of their outputs however enable us, for the first time, to obtain shear results taht are fully independent of any approximate expression, also in the high-l range, where we need to incorporate a non-linear power spectrum of density perturbations, and the effects of baryon physics. This will allow us to fully exploit the cosmological information contained in future high--sensitivity cosmic shear surveys, exploring the physics of cosmic shears via weak lensing measurements.
The current methods available to estimate gravitational shear from astronomical images of galaxies introduce systematic errors which can affect the accuracy of weak lensing cosmological constraints. We study the impact of KSB shape measurement bias o n the cosmological interpretation of tomographic two-point weak lensing shear statistics. We use a set of realistic image simulations produced by the STEP collaboration to derive shape measurement bias as a function of redshift. We define biased two-point weak lensing statistics and perform a likelihood analysis for two fiducial surveys. We present a derivation of the covariance matrix for tomography in real space and a fitting formula to calibrate it for non-Gaussianity. We find the biased aperture mass dispersion is reduced by ~20% at redshift ~1, and has a shallower scaling with redshift. This effect, if ignored in data analyses, biases sigma_8 and w_0 estimates by a few percent. The power of tomography is significantly reduced when marginalising over a range of realistic shape measurement biases. For a CFHTLS-Wide-like survey, [Omega_m, sigma_8] confidence regions are degraded by a factor of 2, whereas for a KIDS-like survey the factor is 3.5. Our results are strictly valid only for KSB methods but they demonstrate the need to marginalise over a redshift-dependent shape measurement bias in all future cosmological analyses.
Correlations of galaxy ellipticities with large-scale structure, due to galactic tidal interactions, provide a potentially significant contaminant to measurements of cosmic shear. However, these intrinsic alignments are still poorly understood for ga laxies at the redshifts typically used in cosmic shear analyses. For spiral galaxies, it is thought that tidal torquing is significant in determining alignments resulting in zero correlation between the intrinsic ellipticity and the gravitational potential in linear theory. Here, we calculate the leading-order correction to this result in the tidal-torque model from non-linear evolution, using second-order perturbation theory, and relate this to the contamination from intrinsic alignments to the recently-measured cross-correlation between galaxy ellipticities and the CMB lensing potential. On the scales relevant for CMB lensing observations, the squeezed limit of the gravitational bispectrum dominates the correlation. Physically, the large-scale mode that sources CMB lensing modulates the small-scale power and hence the intrinsic ellipticity, due to non-linear evolution. We find that the angular cross-correlation from tidal torquing has a very similar scale dependence as in the linear alignment model, believed to be appropriate for elliptical galaxies. The amplitude of the cross-correlation is predicted to depend strongly on the formation redshift, being smaller for galaxies that formed at higher redshift when the bispectrum of the gravitational potential was smaller. Finally, we make simple forecasts for constraints on intrinsic alignments from the correlation of forthcoming cosmic shear measurements with current CMB lensing measurements. We note that cosmic variance can be significantly reduced in measurements of the difference in the intrinsic alignments for elliptical and spiral galaxies if these can be separated (e.g., using colour).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا