ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-assembly of protein amyloid: a competition between amorphous and ordered aggregation

152   0   0.0 ( 0 )
 نشر من قبل Chiu Fan Lee
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Chiu Fan Lee




اسأل ChatGPT حول البحث

Protein aggregation in the form of amyloid fibrils has important biological and technological implications. Although the self-assembly process is highly efficient, aggregates not in the fibrillar form would also occur and it is important to include these disordered species when discussing the thermodynamic equilibrium behavior of the system. Here, we initiate such a task by considering a mixture of monomeric proteins and the corresponding aggregates in the disordered form (micelles) and in the fibrillar form (amyloid fibrils). Starting with a model on the respective binding free energies for these species, we calculate their concentrations at thermal equilibrium. We then discuss how the incorporation of the disordered structure furthers our understanding on the various amyloid promoting factors observed empirically, and on the kinetics of fibrilization.



قيم البحث

اقرأ أيضاً

We present a computational study on the folding and aggregation of proteins in aqueous environment, as function of its concentration. We show how the increase of the concentration of individual protein species can induce a partial unfolding of the na tive conformation without the occurrence of aggregates. A further increment of the protein concentration results in the complete loss of the folded structures and induces the formation of protein aggregates. We discuss the effect of the protein interface on the water fluctuations in the protein hydration shell and their relevance in the protein-protein interaction.
Controlling the self-assembly of supramolecular structures is vital for living cells, and a central challenge for engineering at the nano- and microscales. Nevertheless, even particles without optimized shapes can robustly form well-defined morpholog ies. This is the case in numerous medical conditions where normally soluble proteins aggregate into fibers. Beyond the diversity of molecular mechanisms involved, we propose that fibers generically arise from the aggregation of irregular particles with short-range interactions. Using a minimal model of ill-fitting, sticky particles, we demonstrate robust fiber formation for a variety of particle shapes and aggregation conditions. Geometrical frustration plays a crucial role in this process, and accounts for the range of parameters in which fibers form as well as for their metastable character.
Many proteins have the potential to aggregate into amyloid fibrils, which are associated with a wide range of human disorders including Alzheimers and Parkinsons disease. In contrast to that of folded proteins, the thermodynamic stability of amyloid fibrils is not well understood: specifically the balance between entropic and enthalpic terms, including the chain entropy and the hydrophobic effect, are poorly characterised. Using simulations of a coarse-grained protein model we delineate the enthalpic and entropic contributions dominating amyloid fibril elongation, predicting a characteristic temperature-dependent enthalpic signature. We confirm this thermodynamic signature by performing calorimetric experiments and a meta-analysis over published data. From these results, we can also elucidate the necessary conditions to observe cold denaturation of amyloid fibrils. Overall, we show that amyloid fibril elongation is associated with a negative heat capacity, the magnitude of which correlates closely with the hydrophobic surface area that is buried upon fibril formation, highlighting the importance of hydrophobicity for fibril stability.
The behavior of proteins near interfaces is relevant for biological and medical purposes. Previous results in bulk show that, when the protein concentration increases, the proteins unfold and, at higher concentrations, aggregate. Here, we study how t he presence of a hydrophobic surface affects this course of events. To this goal, we use a coarse-grained model of proteins and study by simulations their folding and aggregation near an ideal hydrophobic surface in an aqueous environment by changing parameters such as temperature and hydrophobic strength, related, e.g., to ions concentration. We show that the hydrophobic surface, as well as the other parameters, affect both the protein unfolding and aggregation. We discuss the interpretation of these results and define future lines for further analysis, with their possible implications in neurodegenerative diseases.
Dynamin is a ubiquitous GTPase that tubulates lipid bilayers and is implicated in many membrane severing processes in eukaryotic cells. Setting the grounds for a better understanding of this biological function, we develop a generalized hydrodynamics description of the conformational change of large dynamin-membrane tubes taking into account GTP consumption as a free energy source. On observable time scales, dissipation is dominated by an effective dynamin/membrane friction and the deformation field of the tube has a simple diffusive behavior, which could be tested experimentally. A more involved, semi-microscopic model yields complete predictions for the dynamics of the tube and possibly accounts for contradictory experimental results concerning its change of conformation as well as for plectonemic supercoiling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا