ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison Principles for subelliptic equations of Monge-Ampere type

163   0   0.0 ( 0 )
 نشر من قبل Paola Mannucci
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present two comparison principles for viscosity sub- and supersolutions of Monge-Ampere-type equations associated to a family of vector fields. In particular, we obtain the uniqueness of a viscosity solution to the Dirichlet problem for the equation of prescribed horizontal Gauss curvature in a Carnot group.



قيم البحث

اقرأ أيضاً

150 - Cristian Rios 2008
We characterize when radial weak solutions to Monge-Ampere equations are smooth. This paper extends previous partial results and also covers Generalized Monge-Ampere equations and infinitely vanishing right hand side.
We find normal forms for parabolic Monge-Ampere equations. Of these, the most general one holds for any equation admitting a complete integral. Moreover, we explicitly give the determining equation for such integrals; restricted to the analytic case, this equation is shown to have solutions. The other normal forms exhaust the different classes of parabolic Monge-Ampere equations with symmetry properties, namely, the existence of classical or nonholonomic intermediate integrals. Our approach is based on the equivalence between parabolic Monge-Ampere equations and particular distributions on a contact manifold, and involves a classification of vector fields lying in the contact structure. These are divided into three types and described in terms of the simplest ones (characteristic fields of first order PDEs).
79 - Cyril Letrouit 2021
We revisit the paper [Mel86] by R. Melrose, providing a full proof of the main theorem on propagation of singularities for subelliptic wave equations, and linking this result with sub-Riemannian geometry. This result asserts that singularities of sub elliptic wave equations only propagate along null-bicharacteristics and abnormal extremal lifts of singular curve. As a new consequence, for x = y and denoting by K G the wave kernel, we obtain that the singular support of the distribution t $rightarrow$ K G (t, x, y) is included in the set of lengths of the normal geodesics joining x and y, at least up to the time equal to the minimal length of a singular curve joining x and y.
We prove that integrability of a dispersionless Hirota type equation implies the symplectic Monge-Ampere property in any dimension $geq 4$. In 4D this yields a complete classification of integrable dispersionless PDEs of Hirota type through a list of heavenly type equations arising in self-dual gravity. As a by-product of our approach we derive an involutive system of relations characterising symplectic Monge-Ampere equations in any dimension. Moreover, we demonstrate that in 4D the requirement of integrability is equivalent to self-duality of the conformal structure defined by the characteristic variety of the equation on every solution, which is in turn equivalent to the existence of a dispersionless Lax pair. We also give a criterion of linerisability of a Hirota type equation via flatness of the corresponding conformal structure, and study symmetry properties of integrable equations.
We prove that generalised Monge-Ampere equations (a family of equations which includes the inverse Hessian equations like the J-equation, as well as the Monge-Ampere equation) on projective manifolds have smooth solutions if certain intersection numb ers are positive. As corollaries of our work, we improve a result of Chen (albeit in the projective case) on the existence of solutions to the J-equation, and prove a conjecture of Szekelyhidi in the projective case on the solvability of inverse Hessian equations. We also prove an equivariant version of our results, albeit under the assumption of uniform positivity. In particular, we can recover existing results on manifolds with large symmetry such as projective toric manifolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا