ﻻ يوجد ملخص باللغة العربية
The single band, two dimensional Hubbard Hamiltonian has been extensively studied as a model for high temperature superconductivity. While Quantum Monte Carlo simulations within the dynamic cluster approximation are now providing considerable evidence for a d-wave superconducting state at low temperature, such a transition remains well out of reach of finite lattice simulations because of the sign problem. We show here that a bilayer Hubbard model, in which one layer is electron doped and one layer is hole doped, can be studied to lower temperatures and exhibits an interesting signal of d-wave pairing. The results of our simulations bear resemblance to a recent report on the magnetic and superconducting properties of Ba$_2$Ca$_3$Cu$_4$O$_8$F$_2$ which contains both electron and hole doped CuO$_2$ planes. We also explore the phase diagram of bilayer models in which each sheet is at half-filling.
Cerium-doped manganite thin films were grown epitaxially by pulsed laser deposition at $720 ^circ$C and oxygen pressure $p_{O_2}=1-25 $Pa and were subjected to different annealing steps. According to x-ray diffraction (XRD) data, the formation of CeO
We report single layer resistivities of 2-dimensional electron and hole gases in an electron-hole bilayer with a 10nm barrier. In a regime where the interlayer interaction is stronger than the intralayer interaction, we find that an insulating state
The mixed-valent multiferroic compound CaMn7O12 is studied for its magnetic and electric properties. The compound undergoes magnetic ordering below 90 K with a helimagnetic structure followed by a low temperature magnetic anomaly observed around 43 K
We investigate signatures of electronic correlations in the narrow-gap semiconductor FeGa$_3$ by means of electrical resistivity and thermodynamic measurements performed on single crystals of FeGa$_3$, Fe$_{1-x}$Mn$_x$Ga$_3$ and FeGa$_{3-y}$Zn$_y$, c
Superfluidity in e-h bilayers in graphene and GaAs has been predicted many times but not observed. A key problem is how to treat the screening of the Coulomb interaction for pairing. Different mean-field theories give dramatically different conclusio