ﻻ يوجد ملخص باللغة العربية
We report all-electron variational and diffusion quantum Monte Carlo (VMC and DMC) calculations for the noble gas atoms He, Ne, Ar, Kr, and Xe. The calculations were performed using Slater-Jastrow wave functions with Hartree-Fock single-particle orbitals. The quality of both the optimized Jastrow factors and the nodal surfaces of the wave functions declines with increasing atomic number Z, but the DMC calculations are tractable and well behaved in all cases. We discuss the scaling of the computational cost of DMC calculations with Z.
We report variational and diffusion Quantum Monte Carlo ground-state energies of the three-dimensional electron gas using a model periodic Coulomb interaction and backflow corrections for N=54, 102, 178, and 226 electrons. We remove finite-size effec
We analyze the problem of eliminating finite-size errors from quantum Monte Carlo (QMC) energy data. We demonstrate that both (i) adding a recently proposed [S. Chiesa et al., Phys. Rev. Lett. 97, 076404 (2006)] finite-size correction to the Ewald en
We have used diffusion Monte Carlo (DMC) simulations to calculate the energy barrier for H$_2$ dissociation on the Mg(0001) surface. The calculations employ pseudopotentials and systematically improvable B-spline basis sets to expand the single parti
We introduce a simple but efficient method for grand-canonical twist averaging in quantum Monte Carlo calculations. By evaluating the thermodynamic grand potential instead of the ground state total energy, we greatly reduce the sampling errors caused
We present density-functional theory (DFT) and quantum Monte Carlo (QMC) calculations designed to resolve experimental and theoretical controversies over the optical properties of H-terminated C nanoparticles (diamondoids). The QMC results follow the