ﻻ يوجد ملخص باللغة العربية
We analyze the absolute magnitude (M_r) and color (u-r) of low redshift (z<0.06) galaxies in the Sloan Digital Sky Survey Data Release 6. galaxies with nearly exponential profiles (Sloan parameter fracDeV < 0.1) fall on the blue sequence of the color - magnitude diagram; if, in addition, these exponential galaxies have M_r < -19, they show a dependence of u-r color on apparent axis ratio q expected for a dusty disk galaxy. By fitting luminosity functions for exponential galaxies with different values of q, we find that the dimming is well described by the relation Delta M_r = 1.27 (log q)^2, rather than the Delta M = C log q law that is frequently assumed. When the absolute magnitudes of bright exponential galaxies are corrected to their face-on value, M_r^f = M_r - Delta M_r, the average u-r color is linearly dependent on M_r^f for a given value of q. Nearly face-on exponential galaxies (q > 0.9) have a shallow dependence of mean u-r color on M_r^f (0.096 magnitudes redder for every magnitude brighter). By comparison, nearly edge-on exponential galaxies (q < 0.3) are 0.265 magnitudes redder for every magnitude brighter. When the dimming law Delta M = 1.27 (log q)^2 is used to create an inclination-corrected sample of bright exponential galaxies, their apparent shapes are confirmed to be consistent with a distribution of mildly non-circular disks, with median short-to-long axis ratio gamma = 0.22 and median disk ellipticity epsilon = 0.08.
We determine the underlying shapes of spiral and elliptical galaxies in the Sloan Digital Sky Survey Data Release 6 from the observed distribution of projected galaxy shapes, taking into account the effects of dust extinction and reddening. We assume
Extinction in galaxies affects their observed properties. In scenarios describing the distribution of dust and stars in individual disk galaxies, the amplitude of the extinction can be modulated by the inclination of the galaxies. In this work we inv
(Abridged) We describe a sample of low-mass Seyfert 2 galaxies selected from the Sloan Digital Sky Survey, having a median absolute magnitude of M_g = -19.0 mag. These galaxies are Type 2 counterparts to the Seyfert 1 galaxies with intermediate-mass
We study the evolution of 82302 star-forming (SF) galaxies from the SDSS. Our main goals are to explore new ways of handling star formation histories (SFH) obtained with our publicly available spectral synthesis code STARLIGHT, and apply them to inve
[Abridged] We present here a new and homogeneous sample of 3340 galaxies selected from the Sloan Digital Sky Survey (SDSS) based solely on the observed strength of their Hdelta absorption line. These galaxies are commonly known as ``post-starburst or