ترغب بنشر مسار تعليمي؟ اضغط هنا

Many-body dynamics of Rydberg excitation using the $Omega$-expansion

309   0   0.0 ( 0 )
 نشر من قبل Jovica Stanojevic
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the excitation dynamics of Rydberg atoms in ultracold atomic samples by expanding the excitation probability and the correlation function between excited atoms in powers of the isolated atom Rabi frequency $Omega$. In the Heisenberg picture, we give recurrence relations to calculate any order of the expansions, which ere expected to be well-behaved for arbitrarily strong interactions. For homogeneous large samples, we give the explicit form of the expansions, up to $Omega^4$, averaged over all possible random spatial distributions of atoms, for the most important cases of excitation pulses and interactions.



قيم البحث

اقرأ أيضاً

The recent observation of high-lying Rydberg states of excitons in semiconductors with relatively high binding energy motivates exploring their applications in quantum nonlinear optics and quantum information processing. Here, we study Rydberg excita tion dynamics of a mesoscopic array of excitons to demonstrate its application in simulation of quantum many-body dynamics. We show that the $mathbb{Z}_2$-ordered phase can be reached using physical parameters available for cuprous oxide (Cu$_2$O) by optimizing driving laser parameters such as duration, intensity, and frequency. In an example, we study the application of our proposed system to solving the Maximum Independent Set (MIS) problem based on the Rydberg blockade effect.
We develop a theoretical approach for the dynamics of Rydberg excitations in ultracold gases, with a realistically large number of atoms. We rely on the reduction of the single-atom Bloch equations to rate equations, which is possible under various e xperimentally relevant conditions. Here, we explicitly refer to a two-step excitation-scheme. We discuss the conditions under which our approach is valid by comparing the results with the solution of the exact quantum master equation for two interacting atoms. Concerning the emergence of an excitation blockade in a Rydberg gas, our results are in qualitative agreement with experiment. Possible sources of quantitative discrepancy are carefully examined. Based on the two-step excitation scheme, we predict the occurrence of an antiblockade effect and propose possible ways to detect this excitation enhancement experimentally in an optical lattice as well as in the gas phase.
We investigate a long-range interaction between $64D_{5/2}$ Rydberg-atom pairs and antiblockade effect employing a two-color excitation scheme. The first color (pulse A) is set to resonantly excite the Rydberg transition and prepare a few seed atoms, which establish a blockade region due to strong long-range interaction between Rydberg-atom pairs. The second color (pulse B) is blue detuned relative to Rydberg transition and enables further Rydberg excitation of atoms by counteracting the blockade effect. It is found that a few seed atoms lead to a huge difference of the Rydberg excitation with pulse B. The dynamic evolution of antiblockade excitation by varying the pulse-B duration at 30-MHz blue detuning is also investigated. The evolution result reveals that a small amount of seed atoms can trigger an avalanche Rydberg excitation. A modified superatom model is used to simulate the antiblockade effect and relevant dynamic evolution. The simulations are consistent with the experimental measurements.
435 - J. Stanojevic , R. C^ote 2008
We investigate the collective aspects of Rydberg excitation in ultracold mesoscopic systems. Strong interactions between Rydberg atoms influence the excitation process and impose correlations between excited atoms. The manifestations of the collectiv e behavior of Rydberg excitation are the many-body Rabi oscillations, spatial correlations between atoms as well as the fluctuations of the number of excited atoms. We study these phenomena in detail by numerically solving the many-body Schredinger equation.
We study the propagation of strongly interacting Rydberg polaritons through an atomic medium in a one-dimensional optical lattice. We derive an effective single-band Hubbard model to describe the dynamics of the dark state polaritons under realistic assumptions. Within this model, we analyze the driven-dissipative transport of polaritons through the system by considering a coherent drive on one side and by including the spontaneous emission of the metastable Rydberg state. Using a variational approch to solve the many-body problem, we find strong antibunching of the outgoing photons despite the losses from the Rydberg state decay.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا