ترغب بنشر مسار تعليمي؟ اضغط هنا

Bell inequality violation with two remote atomic qubits

366   0   0.0 ( 0 )
 نشر من قبل D. N. Matsukevich
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe violation of a Bell inequality between the quantum states of two remote Yb ions separated by a distance of about one meter with the detection loophole closed. The heralded entanglement of two ions is established via interference and joint detection of two emitted photons, whose polarization is entangled with each ion. The entanglement of remote qubits is also characterized by full quantum state tomography.



قيم البحث

اقرأ أيضاً

The original formula of Bell inequality (BI) in terms of two-spin singlet has to be modified for the entangled-state with parallel spin polarization. Based on classical statistics of the particle-number correlation, we prove in this paper an extended BI, which is valid for two-spin entangled states with both parallel and antiparallel polarizations. The BI and its violation can be formulated in a unified formalism based on the spin coherent-state quantum probability statistics with the state-density operator, which is separated to the local and non-local parts. The local part gives rise to the BI, while the violation is a direct result of the non-local quantum interference between two components of entangled state. The Bell measuring outcome correlation denoted by $P_{B}$ is always less than or at most equal to one for the local realistic model ($P_{B}^{lc}leq1$) regardless of the specific superposition coefficients of entangled state. Including the non-local quantum interference the maximum violation of BI is found as $P_{B}^{max}$ $=2$, which, however depends on state parameters and three measuring directions as well. Our result is suitable for entangled photon pairs.
Here we demonstrate, for the first time, violation of Bells inequality using a triggered quantum dot photon-pair source without post-selection. Furthermore, the fidelity to the expected Bell state can be increased above 90% using temporal gating to r eject photons emitted at times when collection of uncorrelated light is more probable. A direct measurement of a CHSH Bell inequality is made showing a clear violation, highlighting that a quantum dot entangled photon source is suitable for communication exploiting non-local quantum correlations.
72 - T.N.Palmer 2017
A finite non-classical framework for physical theory is described which challenges the conclusion that the Bell Inequality has been shown to have been violated experimentally, even approximately. This framework postulates the universe as a determinis tic locally causal system evolving on a measure-zero fractal-like geometry $I_U$ in cosmological state space. Consistent with the assumed primacy of $I_U$, and $p$-adic number theory, a non-Euclidean (and hence non-classical) metric $g_p$ is defined on cosmological state space, where $p$ is a large but finite Pythagorean prime. Using number-theoretic properties of spherical triangles, the inequalities violated experimentally are shown to be $g_p$-distant from the CHSH inequality, whose violation would rule out local realism. This result fails in the singular limit $p=infty$, at which $g_p$ is Euclidean. Broader implications are discussed.
We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement cha racterization of this hybrid system may also be useful in quantum information applications.
110 - Lixiang Chen , Xiancong Lu , 2011
Based on spin-orbit coupling induced by q-plates, we present a feasible experimental proposal for preparing two-dimensional spatially inhomogeneous polarizations of light. We further investigate the quantum correlations between these inhomogeneous po larizations of photon pairs generated by spontaneous parametric down-conversion, which in essence describe the so-called hypoentanglement that is established between composite spin-orbit variables of photons. The violation of the Clauser-Horne-Shimony-Holt-Bell inequality is predicted with S=2sqrt2 to illustrate the entangled nature of the cylindrical symmetry of spatially inhomogeneous polarizations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا