ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin of dwarf ellipticals in the Virgo cluster

122   0   0.0 ( 0 )
 نشر من قبل Boselli Alessandro
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of dwarf (L_H < 10^{9.6} L_Ho) star forming and quiescent galaxies in the Virgo cluster by comparing their UV to radio centimetric properties to the predictions of multizone chemo-spectrophotometric models of galaxy evolution especially tuned to take into account the perturbations induced by the interaction with the cluster intergalactic medium. Our models simulate one or multiple ram pressure stripping events and galaxy starvation. Models predict that all star forming dwarf galaxies entering the cluster for the first time loose most, if not all, of their atomic gas content, quenching on short time scales (< 150 Myr) their activity of star formation. These dwarf galaxies soon become red and quiescent, gas metal-rich objects with spectrophotometric and structural properties similar to those of dwarf ellipticals. Young, low luminosity, high surface brightness star forming galaxies such as late-type spirals and BCDs are probably the progenitors of relatively massive dwarf ellipticals, while it is likely that low surface brightness magellanic irregulars evolve into very low surface brightness quiescent objects hardly detectable in ground based imaging surveys. The small number of dwarf galaxies with physical properties intermediate between those of star forming and quiescent systems is consistent with a rapid (< 1 Gyr) transitional phase between the two dwarf galaxies populations. These results, combined with statistical considerations, are consistent with the idea that most of the dwarf ellipticals dominating the faint end of the Virgo luminosity function were initially star forming systems, accreted by the cluster and stripped of their gas by one or subsequent ram pressure stripping events.



قيم البحث

اقرأ أيضاً

We report evidence for dynamically significant rotation in the globular cluster systems of two luminous Virgo dwarf ellipticals, VCC1261 and VCC1528. Including previous results for VCC1087, the globular cluster systems of all three Virgo dwarf ellipt icals studied in detail to date exhibit v_rot/sigma > 1. Taking the rotation seen in the globular clusters as maximal disk rotation, we find all three dEs lie on the r-band Tully-Fisher relation. We argue that these data support the hypothesis that luminous dEs are the remnants of transformed disk galaxies. We also obtained deep, longslit data for the stars in VCC1261 and VCC1528. Both these galaxies show rapid rotation in their inner regions, with spatial scales of ~0.5 kpc. These rotation velocities are similar to those seen in the GC systems. Since our longslit data for Virgo dEs extend out to 1-2 effective radii (typical of deep observations), whereas the globular clusters extend out to 4--7 effective radii, we conclude that non-detections of rotation in many luminous dEs may simply be due to a lack of radial coverage in the stellar data, and that globular clusters represent singularly sensitive probes of the dynamics of dEs. Based on these data, we suggest that gas disks are significant sites of globular cluster formation in the early universe.
We present the results of a Keck-ESI spectroscopic study of six dwarf elliptical (dE) galaxies in the Perseus Cluster core, and confirm two dwarfs as cluster members for the first time. All six dEs follow the size-magnitude relation for dE/dSph galax ies. Central velocity dispersions are measured for three Perseus dwarfs in our sample, and all lie on the $sigma$-luminosity relation for early-type, pressure supported systems. We furthermore examine SA 0426-002, a unique dE in our sample with a bar-like morphology surrounded by low-surface brightness wings/lobes ($mu_{B} = 27$ mag arcsec$^{-2}$). Given its morphology, velocity dispersion ($sigma_{0} = 33.9 pm 6.1 $ km s$^{-1}$), velocity relative to the brightest cluster galaxy NGC 1275 (2711 km s$^{-1}$), size ($R_{e} =2.1 pm 0.10$ kpc), and Sersic index ($n= 1.2 pm 0.02$), we hypothesise the dwarf has morphologically transformed from a low mass disc to dE via harassment. The low-surface brightness lobes can be explained as a ring feature, with the bar formation triggered by tidal interactions via speed encounters with Perseus Cluster members. Alongside spiral structure found in dEs in Fornax and Virgo, SA 0426-002 provides crucial evidence that a fraction of bright dEs have a disc infall origin, and are not part of the primordial cluster population.
We present a study of the smallest and faintest galaxies found in a very deep photographic R band survey of two regions of the Virgo Cluster, totalling 3.2 square degrees, made with the UK Schmidt Telescope. The objects we detect have the same physic al sizes and surface brightnesses as Local Group dwarf spheroidal galaxies. The luminosity function of these extremely low luminosity galaxies (down to M_R =~ -11 or about 5 X 10^{-5} L*) is very steep, with a power law slope alpha = -2.2.
We present a study of the smallest and faintest galaxies found in a very deep photographic R band survey of regions of the Virgo Cluster, totalling over 3 square degrees, made with the UK Schmidt Telescope. The objects we detect have the same physica l sizes and surface brightnesses as Local Group dwarf spheroidal galaxies. The luminosity function of these extremely low luminosity galaxies (down to M_R =~ -11 or about 5 X 10^{-5} L*) is very steep, with a power law slope alpha =~ -2, as would be expected in many theories of galaxy formation via hierarchical clustering, supporting previous observational evidence at somewhat higher luminosities in other clusters.
We use dust scaling relations to investigate the hypothesis that Virgo cluster transition-type dwarfs are infalling star-forming field galaxies, which is argued based on their optical features (e.g. disks, spiral arms, bars) and kinematic properties similar to late-type galaxies. After their infall, environmental effects gradually transform them into early-type galaxies through the removal of their interstellar medium and quenching of all star formation activity. In this paper, we aim to verify whether this hypothesis holds using far-infrared diagnostics based on Herschel observations of the Virgo cluster taken as part of the Herschel Virgo Cluster Survey (HeViCS). We select transition-type objects in the nearest cluster, Virgo, based on spectral diagnostics indicative for their residual or ongoing star formation. We detect dust Md ~ 10^{5-6} Msun in 36% of the transition-type dwarfs located on the high end of the stellar mass distribution. This suggests that the dust reservoirs present in non-detections fall just below the Herschel detection limit (< 1.1x10^5 Msun). Dust scaling relations support the hypothesis of a transformation between infalling late-type galaxies to quiescent low-mass spheroids governed by environmental effects, with dust-to-stellar mass fractions for transition-type dwarfs in between values characteristic for late-type objects and the lower dust fractions observed in early-type galaxies. Several transition-type dwarfs demonstrate blue central cores, hinting at the radially outside-in removal of gas and quenching of star formation activity. The fact that dust is also confined to the inner regions suggests that metals are stripped in the outer regions along with the gas. In the scenario of most dust being stripped from the galaxy along with the gas, we argue that... (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا