ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-perturbative QED Model with Dressed States to Tackle HHG in Ultrashort Intense Laser Pulses

308   0   0.0 ( 0 )
 نشر من قبل Zengxiu Zhao
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A generalization of non-perturbative QED model for high harmonic generation is developed for the multi-mode optical field case. By introducing classical-field-dressed quantized Volkov states analytically, a formula to calculate HHG for hydrogen-like atom in ultrashort intense laser pulse is obtained, which has a simple intuitive interpretation. The dressed state QED model indicates a new perspective to understand HHG, for example, the presence of the weak even-order harmonic photons, which has been verified by both theoretical analysis and numerical computation. Long wavelength approximation and strong field approximation are involved in the development of the formalism.



قيم البحث

اقرأ أيضاً

The vast majority of QED results are obtained in relatively weak fields and so in the framework of perturbation theory. However, forthcoming laser facilities providing extremely high fields can be used to enter not-yet-studied regimes. Here, a scheme is proposed that might be used to reach a supercritical regime of radiation reaction or even the fully non-perturbative regime of quantum electrodynamics. The scheme considers the collision of a 100 GeV-class electron beam with a counterpropagating ultraintense electromagnetic pulse. To reach these supercritical regimes, it is unavoidable to use a pulse with ultrashort duration. Using two-dimensional particle-in-cell simulations, it is therefore shown how one can convert a next-generation optical laser to an ultraintense ($Iapprox 2.9times 10^{24} text{ W} , text{cm}^{-2}$) attosecond (duration $approx$ 150 as) pulse. It is shown that if the perturbation theory persists in extremely fields, the spectrum of secondary particles can be found semi-analytically. In contrast, a comparison with experimental data may allow differentiating the contribution of high-order radiative corrections if the perturbation theory breaks.
A theoretical comparison of the electronic excitation and ionisation behaviour of molecular hydrogen oriented either parallel or perpendicular to a linear polarised laser pulse is performed. The investigation is based on a non-perturbative treatment that solves the full time-dependent Schrodinger equation of both correlated electrons within the fixed-nuclei approximation and the dipole. Results are shown for two different laser pulse lengths and intensities as well as for a large variety of photon frequencies starting in the 1- and reaching into the 6-photon regime. In order to investigate the influence of the intrinsic diatomic two-center problem even further, two values of the internuclear separation and a newly developed atomic model are considered.
The recoil associated with photon emission is key to the dynamics of ultrarelativistic electrons in strong electromagnetic fields, as are found in high-intensity laser-matter interactions and astrophysical environments such as neutron star magnetosph eres. When the energy of the photon becomes comparable to that of the electron, it is necessary to use quantum electrodynamics (QED) to describe the dynamics accurately. However, computing the appropriate scattering matrix element from strong-field QED is not generally possible due to multiparticle effects and the complex structure of the electromagnetic fields. Therefore these interactions are treated semiclassically, coupling probabilistic emission events to classical electrodynamics using rates calculated in the locally constant field approximation. Here we provide comprehensive benchmarking of this approach against the exact QED calculation for nonlinear Compton scattering of electrons in an intense laser pulse. We find agreement at the percentage level between the photon spectra, as well as between the models predictions of absorption from the background field, for normalized amplitudes $a_0 > 5$. We discuss possible routes towards improved numerical methods and the implications of our results for the study of QED cascades.
83 - Daniel Seipt 2017
The collision of ultra-relativistic electron beams with intense short laser pulses makes possible to study QED in the high-intensity regime. Present day high-intensity lasers mostly operate with short pulse durations of several tens of femtoseconds, i.e. only a few optical cycles. A profound theoretical understanding of short pulse effects is important not only for studying fundamental aspects of high-intensity laser matter interaction, but also for applications as novel X- and gamma-ray radiation sources. In this article we give a brief overview of the theory of high-intensity QED with focus on effects due to the short pulse duration. The non-linear spectral broadening in non-linear Compton scattering due to the short pulse duration and its compensation is discussed.
73 - Y. Z. Shi , F. L. Dong , Y. P. Li 2015
We study the influence of the pulse duration on high harmonic generation (HHG) with exploring a wide laser-parameter region theoretically. Previous studies have showed that for high laser intensities near to the saturation ionization intensity, the H HG inversion efficiency is higher for shorter pulses since the ground-state depletion is weaker in the latter. Surprisingly, our simulations show this high efficiency also appears even for a moderate laser intensity at which the ionization is not strong. A classical effect relating to shorter travel distances of the rescattering electron in shorter pulses, is found to contribute importantly to this high efficiency. The effect can be amplified significantly as a two-color laser field is used, suggesting an effective approach for increasing the HHG yield.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا