ﻻ يوجد ملخص باللغة العربية
The quantum chromodynamics (QCD) sum rules for the Delta baryons are analyzed by taking into account the finite-width effects, through explicit utilization of the Breit-Wigner shape. We apply a Monte-Carlo based analysis to the traditional and the parity-projected sum rules. The first Delta excitation state is also considered as a sub-continuum resonance and the widths are calculated using the mass values as input.
We study the triply heavy baryons $Omega_{QQQ}$ $(Q=c, b)$ in the QCD sum rules by performing the first calculation of the next-to-leading order (NLO) contribution to the perturbative QCD part of the correlation functions. Compared with the leading o
We identify the recently observed charmonium-like structure $Z_c^pm(3900)$ as the charged partner of the X(3872) state. Using standard techniques of QCD sum rules, we evaluate the three-point function and extract the coupling constants of the $Z_c ,
The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for de-confinement, as later confirm
One of the advantages of the finite energy sum rules is the fact that every operator in the operator product expansion series can be selected individually by the use of an appropriate kernel function which removes other operator poles. This character
Using general baryon interpolating fields $J_B$ for $B= N, Xi, Sigma, $ without derivative, we study QCD sum rules for meson-baryon couplings and their dependence on Dirac structures for the two-point correlation function with a meson $iint d^4x e^{i