ترغب بنشر مسار تعليمي؟ اضغط هنا

The Complete Census of 70-um-Bright Debris Disks within the FEPS (Formation and Evolution of Planetary Systems) Spitzer Legacy Survey of Sun-like Stars

108   0   0.0 ( 0 )
 نشر من قبل Lynne Hillenbrand
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(abbreviated) We report detection with the Spitzer Space Telescope of cool dust surrounding solar type stars. The observations were performed as part of the Legacy Science Program, ``Formation and Evolution of Planetary Systems (FEPS). From the overall FEPS sample (Meyer et al. 2006) of 328 stars having ages ~0.003-3 Gyr we have selected sources with 70 um flux densities indicating excess in their spectral energy distributions above expected photospheric emission........ .....The rising spectral energy distributions towards - and perhaps beyond - 70 um imply dust temperatures T_dust <45-85 K for debris in equilibrium with the stellar radiation field. We infer bulk properties such as characteristic temperature, location, fractional luminosity, and mass of the dust from fitted single temperature blackbody models. For >1/3 of the debris sources we find that multiple temperature components are suggested, implying a spatial distribution of dust extending over many tens of AU. Because the disks are dominated by collisional processes, the parent body (planetesimal) belts may be extended as well. Preliminary assessment of the statistics of cold debris around sun-like stars shows that ~10% of FEPS targets with masses between 0.6 and 1.8 Msun and ages between 30 Myr and 3 Gyr exhibit 70 um emission in excess of the expected photospheric flux density. We find that fractional excess amplitudes appear higher for younger stars and that there may be a trend in 70 um excess frequency with stellar mass.



قيم البحث

اقرأ أيضاً

We present data obtained with the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope (Spitzer) for a sample of 74 young (t < 30 Myr old) Sun-like (0.7 < M(star)/M(Sun) < 1.5) stars. These are a sub-set of the observations that comprise t he Spitzer Legacy science program entitled the Formation and Evolution of Planetary Systems (FEPS). Using IRAC we study the fraction of young stars that exhibit 3.6-8.0 micron infrared emission in excess of that expected from the stellar photosphere, as a function of age from 3-30 Myr. The most straightforward interpretation of such excess emission is the presence of hot (300-1000K) dust in the inner regions (< 3 AU) of a circumstellar disk. Five out of the 74 young stars show a strong infrared excess, four of which have estimated ages of 3-10 Myr. While we detect excesses from 5 optically thick disks, and photospheric emission from the remainder of our sample, we do not detect any excess emission from optically thin disks at these wavelengths. We compare our results with accretion disk fractions detected in previous studies, and use the ensemble results to place additional constraints on the dissipation timescales for optically-thick, primordial disks.
We present Spitzer photometric (IRAC and MIPS) and spectroscopic (IRS low resolution) observations for 314 stars in the Formation and Evolution of Planetary Systems (FEPS) Legacy program. These data are used to investigate the properties and evolutio n of circumstellar dust around solar-type stars spanning ages from approximately 3 Myr to 3 Gyr. We identify 46 sources that exhibit excess infrared emission above the stellar photosphere at 24um, and 21 sources with excesses at 70um. Five sources with an infrared excess have characteristics of optically thick primordial disks, while the remaining sources have properties akin to debris systems. The fraction of systems exhibiting a 24um excess greater than 10.2% above the photosphere is 15% for ages < 300 Myr and declines to 2.7% for older ages. The upper envelope to the 70um fractional luminosity appears to decline over a similar age range. The characteristic temperature of the debris inferred from the IRS spectra range between 60 and 180 K, with evidence for the presence of cooler dust to account for the strength of the 70um excess emission. No strong correlation is found between dust temperature and stellar age. Comparison of the observational data with disk models containing a power-law distribution of silicate grains suggest that the typical inner disk radius is > 10 AU. Although the interpretation is not unique, the lack of excess emission shortwards of 16um and the relatively flat distribution of the 24um excess for ages <300~Myr is consistent with steady-state collisional models.
We have carried out a sensitive search for gas emission lines at infrared and millimeter wavelengths for a sample of 15 young sun-like stars selected from our dust disk survey with the Spitzer Space Telescope. We have used mid-infrared lines to trace the warm (300-100 K) gas in the inner disk and millimeter transitions of 12CO to probe the cold (~20 K) outer disk. We report no gas line detections from our sample. Line flux upper limits are first converted to warm and cold gas mass limits using simple approximations allowing a direct comparison with values from the literature. We also present results from more sophisticated models following Gorti and Hollenbach (2004) which confirm and extend our simple analysis. These models show that the SI line at 25.23 micron can set constraining limits on the gas surface density at the disk inner radius and traces disk regions up to a few AU. We find that none of the 15 systems have more than 0.04 MJ of gas within a few AU from the disk inner radius for disk radii from 1 AU up to ~40 AU. These gas mass upper limits even in the 8 systems younger than ~30 Myr suggest that most of the gas is dispersed early. The gas mass upper limits in the 10-40 AU region, that is mainly traced by our CO data, are <2 Mearth. If these systems are analogs of the Solar System, either they have already formed Uranus- and Neptune-like planets or they will not form them beyond 100 Myr. Finally, the gas surface density upper limits at 1 AU are smaller than 0.01% of the minimum mass solar nebula for most of the sources. If terrestrial planets form frequently and their orbits are circularized by gas, then circularization occurs early.
We present the science database produced by the Formation and Evolution of Planetary Systems (FEPS) Spitzer Legacy program. Data reduction and validation procedures for the IRAC, MIPS, and IRS instruments are described in detail. We also derive stell ar properties for the FEPS sample from available broad-band photometry and spectral types, and present an algorithm to normalize Kurucz synthetic spectra to optical and near-infrared photometry. The final FEPS data products include IRAC and MIPS photometry for each star in the FEPS sample and calibrated IRS spectra.
We report the discovery of a debris system associated with the $sim 30$ Myr old G3/5V star HD 12039 using {it Spitzer Space Telescope} observations from 3.6 -- 160$mu$m. An observed infrared excess (L$_{rm IR}$/L$_{ast} = 1times10^{-4}$) above the ex pected photosphere for $lambda gtrsim 14mu$m is fit by thermally emitting material with a color temperature of T$sim 110$ K, warmer than the majority of debris disks identified to date around Sun-like stars. The object is not detected at 70$mu$m with a 3$sigma$ upper limit 6 times the expected photospheric flux. The spectrum of the infrared excess can be explained by warm, optically thin material comprised of blackbody-like grains of size $gtrsim 7 mu$m that reside in a belt orbiting the star at 4--6 AU. An alternate model dominated by smaller grains, near the blow-out size $asim 0.5mu$m, located at 30-40AU is also possible, but requires the dust to have been produced recently since such small grains will be expelled from the system by radiation pressure in $sim$ few $times 10^{2}$yrs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا