ﻻ يوجد ملخص باللغة العربية
Assuming the Majorana nature of massive neutrinos, we generalize the Friedberg-Lee neutrino mass model to include CP violation in the neutrino mass matrix M_ u. The most general case with all the free parameters of M_ u being complex is discussed. We show that a favorable neutrino mixing pattern (with theta_12 approx 35.3^circ, theta_23=45^circ, theta_13 eq 0^circ and delta=90^circ) can naturally be derived from M_ u, if it has an approximate or softly-broken mu-tau symmetry. We also point out a different way to obtain the nearly tri-bimaximal neutrino mixing pattern with delta=0^circ and non-vanishing Majorana phases.
The $mu$-$tau$ exchange symmetry in the neutrino mass matrix and its breaking as a perturbation are discussed. The exact $mu$-$tau$ symmetry restricts the 2-3 and 1-3 neutrino mixing angles as $theta_{23} = pi/4$ and $theta_{13} = 0$ at a zeroth orde
We study the possible origin of Friedberg-Lee symmetry. First, we propose the generalized Friedberg-Lee symmetry in the potential by including the scalar fields in the field transformations, which can be broken down to the FL symmetry spontaneously.
We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings
The neutrino masses and mixings indicated by current neutrino oscillation experiments suggest that the neutrino mass matrix possesses an approximate $mu-tau$ exchange symmetry. In this study, we explore the neutrino parameter space and show that if a
We perform a global analysis of neutrino oscillation data, including high-precision measurements of the neutrino mixing angle theta_13 at reactor experiments, which have confirmed previous indications in favor of theta_13>0. Recent data presented at