ﻻ يوجد ملخص باللغة العربية
We have investigated the effect of nanometric grain size on magnetic properties of single phase, nanocrystalline, granular La0.7Ca0.3MnO3 (LCMO) sample. We have considered core-shell structure of our LCMO nanoparticles, which can explain its magnetic properties. From the temperature dependence of field cooled (FC) and zero-field cooled (ZFC) dc magnetization (DCM), the magnetic properties could be distinguished into two regimes: a relatively high temperature regime T > 40 K where the broad maximum of ZFC curve (at T = Tmax) is associated with the blocking of core particle moments, whereas the sharp maximum (at T = TS) is related to the freezing of surface (shell) spins. The unusual shape of M (H) loop at T = 1.5 K, temperature dependent feature of coercive field and remanent magnetization give a strong support of surface spin freezing that are occurring at lower temperature regime (T < 40 K) in this LCMO nanoparticles. Additionally, waiting time (tw) dependence of ZFC relaxation measurements at T = 50 K show weak dependence of relaxation rate [S(t)] on tw and dM/dln(t) following a logarithmic variation on time. Both of these features strongly support the high temperature regime to be associated with the blocking of core moments. At T = 20 K, ZFC relaxation measurements indicates the existence of two different types of relaxation processes in the sample with S(t) attaining a maximum at the elapsed time very close to the wait time tw = 1000 sec, which is an unequivocal sign of glassy behavior. This age-dependent effect convincingly establish the surface spin freezing of our LCMO nanoparticles associated with a background of superparamagnetic (SPM) phase of core moments.
We have used oxygen ions irradiation to generate controlled structural disorder in thin manganite films. Conductive atomic force microscopy CAFM), transport and magnetic measurements were performed to analyze the influence of the implantation process
We report active control of the friction force at the contact between a nanoscale asperity and a La$_{0.55}$Ca$_{0.45}$MnO$_3$ (LCMO) thin film using electric fields. We use friction force microscopy under ultrahigh vacuum conditions to measure the f
The structure, electronic, and magnetic properties of the Mo-doped perovskite La0.7Ca0.3Mn1-xMoxO3 (x < 0.1) have been studied. A significant increase in resistivity and lattice parameters were observed with Mo doping. A marginal decrease in the Curi
The effect of doping of rare earth Gd 3+ ion replacing Nd 3+ in Nd0.7Sr0.3MnO3 is investigated in details. Measurements of resistivity, magnetoresistance, magnetization, linear and non linear ac magnetic susceptibility on chemically synthesized (Nd0.
We have studied the temperature dependence of low-field magnetoresistance and current-voltage characteristics of a low-angle bi-crystal grain boundary junction in perovskite manganite La_{2/3}Sr_{1/3}MnO_3 thin film. By gradually trimming the junctio