ﻻ يوجد ملخص باللغة العربية
Molecular beam epitaxy is employed to manufacture self-assembled InAs/GaAs quantum dot Schottky resonant tunneling diodes. By virtue of a thin AlAs insertion barrier, the thermal current is effectively reduced and electron resonant tunneling through quantum dots under both forward and reverse biased conditions is observed at relatively high temperature of 77K. The ground states of quantum dots are found to be at ~0.19eV below the conduction band of GaAs matrix. The theoretical computations are in conformity with experimental data.
Molecular beam epitaxy is employed to manufacture self-assembled InAs/AlAs quantum-dot resonant tunneling diodes. Resonant tunneling current is superimposed on the thermal current, and they make up the total electron transport in devices. Steps in cu
Two dimensional InAs/GaAs quantum ring (QR) is considered using the effective potential approach. The symmetry of QR shape is violated as it is in the well-known Bohigas annular billiard. We calculate energy spectrum and studied the spatial localizat
We investigated the size dependence of the ground state energy in self-assembled InAs quantum dots embedded in resonant tunneling diodes. Individual current steps observed in the current-voltage characteristics are attributed to resonant single-elect
We have fabricated superconductor-quantum dot-superconductor (SC-QD-SC) junctions by using SC aluminum electrodes with narrow gaps laterally contacting a single self-assembled InAs QD. The fabricated junctions exhibited clear Coulomb staircases and C
A scheme of resonant tunneling through the metastable state of semiconductor quantum dot is presented and implemented in the transport study of freestanding InAs quantum dots grown on GaAs(001) under illumination using conductive atomic force microsc