ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear physics inputs needed for geo-neutrino studies

260   0   0.0 ( 0 )
 نشر من قبل Marcello Lissia
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes.



قيم البحث

اقرأ أيضاً

Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes. We present preliminary results f or the geo-neutrinos from Bi-214 decay, a process which accounts for about one half of the total geo-neutrino signal. The feeding probability of the lowest state of Bi-214 - the most important for geo-neutrino signal - is found to be p_0 = 0.177 pm 0.004 (stat) ^{+0.003}_{-0.001} (sys), under the hypothesis of Universal Neutrino Spectrum Shape (UNSS). This value is consistent with the (indirect) estimate of the Table of Isotopes (ToI). We show that achievable larger statistics and reduction of systematics should allow to test possible distortions of the neutrino spectrum from that predicted using the UNSS hypothesis. Implications on the geo-neutrino signal are discussed.
The apparent anomaly in the ratio of muon to electron atmospheric neutrinos first observed by Kamiokande and IMB has been confirmed by Super-Kamiokande and Soudan-2. The experimental analysis, including the asymmetry in the zenithal distributions of the $ mu-mathrm{type} $ events in Super-Kamiokande gives a strong support to the neutrino oscillation hypothesis to solve the anomaly. In this work we are interested by the role of nuclear physics in the neutrino-oxygen reactions used to detect the atmospheric neutrinos. We point out that multi-nucleon excitations of np-nh type and that nuclear correlations could modify an experimental analysis `a la Super-Kamiokande because they lead to a substantial enhancement of the number of 1 v{C}erenkov ring retained events.
We review the general interplay between Nuclear Physics and neutrino-nucleus cross sections at intermediate and high energies. The effects of different reaction mechanisms over the neutrino observables are illustrated with examples in calculations using several nuclear models and ingredients.
This paper describes the Jas4pp framework for exploring physics cases and for detector-performance studies of future particle collision experiments. Jas4pp is a multi-platform Java program for numeric calculations, scientific visualization in 2D and 3D, storing data in various file formats and displaying collision events and detector geometries. It also includes complex data-analysis algorithms for function minimisation, regression analysis, event reconstruction (such as jet reconstruction), limit settings and other libraries widely used in particle physics. The framework can be used with several scripting languages, such as Python/Jython, Groovy and JShell. Several benchmark tests discussed in the paper illustrate significant improvements in the performance of the Groovy and JShell scripting languages compared to the standard Python implementation in C. The improvements for numeric computations in Java are attributed to recent enhancements in the Java Virtual Machine.
274 - Steve Dye 2016
Geo-neutrino observations probe the quantities and distributions of terrestrial heat-producing elements uranium and thorium. The quantities of these elements gauge global radiogenic power, offering insights into the origin and thermal history of the Earth. The distributions reveal the initial partitioning and subsequent transport of these trace elements between metallic core, silicate mantle, and crust types. Ongoing observations at underground sites in Japan and Italy record the energies but not the directions of geo-neutrinos from uranium and thorium. Without directions pointing back to source regions, disentangling the signals from various reservoirs requires resolution of differing rates or energy spectra at separate sites. Due to limited statistics and site contrast, however, the observations at Japan and Italy do not yet measure distinct rates or energy spectra. Further analyses of the observations that derive fluxes, determine a signal from the mantle, and assess the global radiogenic power of uranium and thorium, depend on geochemical assumptions and model predictions. This letter discusses opportunities for eliminating or minimizing these dependencies through observations at dissimilar sites, producing robust geo-neutrino results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا