ﻻ يوجد ملخص باللغة العربية
Usually microscopic electrostatic field around charged impurity ions is neglected when the ionization energy is concerned. The ionization energy is considered to be equal to that of a lonely impurity atom. Here the energy of the electrostatic field around charged impurity ions in semiconductor is taken into account. It is shown that the energy of this field contributes to decrease in the effective ionization energy. At high enough current carriers concentration the effective ionization energy becomes zero.
Determination of defect ionization energy in low-dimensional semiconductors has been a long-standing unsolved problem in first-principles defect calculations because the commonly used methods based on jellium model introduce an unphysical charge dens
Based on high throughput density functional theory calculations, we performed systematic screening for spin-gapless semiconductors (SGSs) in quaternary Heusler alloys XX 0 YZ (X, X 0 , and Y are transition metal elements without Tc, and Z is one of B
We introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between $sigma$ and $S$ based on the complex
We calculate the time evolution of the transient reflection signal in an MoS$_2$ monolayer on a SiO$_2$/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the
Atomically thin layers of transition metal dichalcogenides (TMDCs) exhibit exceptionally strong Coulomb interaction between charge carriers due to the two-dimensional carrier confinement in connection with weak dielectric screening. The van der Waals