ترغب بنشر مسار تعليمي؟ اضغط هنا

Screening and impurity ionization energy in semiconductors

462   0   0.0 ( 0 )
 نشر من قبل Yuri Kornyushin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yuri Kornyushin




اسأل ChatGPT حول البحث

Usually microscopic electrostatic field around charged impurity ions is neglected when the ionization energy is concerned. The ionization energy is considered to be equal to that of a lonely impurity atom. Here the energy of the electrostatic field around charged impurity ions in semiconductor is taken into account. It is shown that the energy of this field contributes to decrease in the effective ionization energy. At high enough current carriers concentration the effective ionization energy becomes zero.



قيم البحث

اقرأ أيضاً

Determination of defect ionization energy in low-dimensional semiconductors has been a long-standing unsolved problem in first-principles defect calculations because the commonly used methods based on jellium model introduce an unphysical charge dens ity uniformly distributed in the material and vacuum regions, causing the well-known divergence issue of charged defect formation energies. Here in this work, by considering the physical process of defect ionization, we propose a charge correction method based on jellium model to replace the unphysical jellium background charge density with the band edge charge density to deal with charged defects. We demonstrate that, our method is physically meaningful, quantitatively accurate and technically simple to determine the defect ionization energies, thus solving the long-standing problem in defect calculations. Our proposed method can be applied to any dimensional semiconductors.
74 - Qiang Gao , Ingo Opahle , 2018
Based on high throughput density functional theory calculations, we performed systematic screening for spin-gapless semiconductors (SGSs) in quaternary Heusler alloys XX 0 YZ (X, X 0 , and Y are transition metal elements without Tc, and Z is one of B , Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb, and Bi). Following the empirical rule, we focused on compounds with 21, 26, or 28 valence electrons, resulting in 12, 000 possible chemical compositions. After systematically evaluating the thermodynamic, mechanical, and dynamical stabilities, we successfully identified 70 stable SGSs, confirmed by explicit electronic structure calculations with proper magnetic ground states. It is demonstrated that all four types of SGSs can be realized, defined based on the spin characters of the bands around the Fermi energy, and the type-II SGSs show promising transport properties for spintronic applications. The effect of spin-orbit coupling is investigated, resulting in large anisotropic magnetoresistance and anomalous Nernst effects.
We introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between $sigma$ and $S$ based on the complex ity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors and Zintl phases. We find an efficient screening using this transport function. The EFF identifies known high performance $p$- and $n$-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.
We calculate the time evolution of the transient reflection signal in an MoS$_2$ monolayer on a SiO$_2$/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the delayed, yet ultrafast, evolution of the signal whose rise time depends on the excess energy of the pump laser: at laser energies above the A- and B-exciton, the pump pulse excites electrons and holes far away from the K valleys in the first Brillouin zone. Electron-phonon and hole-phonon scattering lead to a gradual relaxation of the carriers towards small $textit{Active Excitonic Regions}$ around K, enhancing the dielectric screening. The accompanying time-dependent band gap renormalization dominates over Pauli blocking and the excitonic binding energy renormalization. This explains the delayed buildup of the transient reflection signal of the probe pulse, in excellent agreement with recent experimental data. Our results show that the observed delay is not a unique signature of an exciton formation process but rather caused by coordinated carrier dynamics and its influence on the screening.
Atomically thin layers of transition metal dichalcogenides (TMDCs) exhibit exceptionally strong Coulomb interaction between charge carriers due to the two-dimensional carrier confinement in connection with weak dielectric screening. The van der Waals nature of interlayer coupling makes it easy to integrate TMDC layers into heterostructures with different dielectric or metallic substrates. This allows to tailor electronic and optical properties of these materials, as Coulomb interaction inside atomically thin layers is very susceptible to screening by the environment. Here we theoretically investigate dynamical screening effects in TMDCs due to bulk substrates doped with carriers over a large density range, thereby offering three-dimensional plasmons as tunable degree of freedom. We report a wide compensation of renormalization effects leading to a spectrally more stable exciton than predicted for static substrate screening, even if plasmons and excitons are in resonance. We also find a nontrivial dependence of the single-particle band gap on substrate doping density due to dynamical screening. Our investigation provides microscopic insight into the mechanisms that allow for manipulations of TMDC excitons by means of arbitrary plasmonic environments on the nanoscale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا