ﻻ يوجد ملخص باللغة العربية
It is shown in linear approximation that in the case of one-dimensional problem of transverse electron waves in a half-infinite slab of homogeneous Maxwellian collisionless plasma with the given boundary field frequency two wave branches of solution of the dispersion equation are simultaneously realizing. These are the branch of fast forward waves determined mainly by Maxwell equations of electromagnetic field, as well as the branch of forward and backward slow waves determined in the whole by kinetic properties of electrons in the collective electrical field. The physical nature of wave movements is revealed. A relation is found between electric field amplitudes of fast and slow waves. Multiform dividing the coupled slow waves into standing and traveling parts leads to a necessity of additional requirements to a selection of the type of a device analyzing these waves and its response interpretation.
In this paper we have criticized the so-called Landau damping theory. We have analyzed solutions of the standard dispersion equations for longitudinal (electric) and transversal (electromagnetic and electron) waves in half-infinite slab of the unifor
We have considered an expansion of solutions of the non-linear equations for both longitudinal and transverse waves in collisionless Maxwellian plasma in series of non-damping overtones of the field E(x,t) and electron velocity distribution function
We determine the growth rate of linear instabilities resulting from long-wavelength transverse perturbations applied to periodic nonlinear wave solutions to the Schamel-Korteweg-de Vries-Zakharov-Kuznetsov (SKdVZK) equation which governs weakly nonli
The dynamics of electron-plasma waves are described at arbitrary collisionality by considering the full Coulomb collision operator. The description is based on a Hermite-Laguerre decomposition of the velocity dependence of the electron distribution f
The head-on collision of ion-acoustic solitary waves in a collisionless plasma with cold ions and Boltzmann electrons is studied. It is shown that solitary waves of sufficiently large amplitudes do not retain their identity after a collision. Their a