ﻻ يوجد ملخص باللغة العربية
We present a general scheme for constructing Monte Carlo realizations of equilibrium, collisionless galaxy models with known distribution function (DF) f_0. Our method uses importance sampling to find the sampling DF f_s that minimizes the mean-square formal errors in a given set of projections of the DF f_0. The result is a multi-mass N-body realization of the galaxy model in which ``interesting regions of phase-space are densely populated by lots of low-mass particles, increasing the effective N there, and less interesting regions by fewer, higher-mass particles. As a simple application, we consider the case of minimizing the shot noise in estimates of the acceleration field for an N-body model of a spherical Hernquist model. Models constructed using our scheme easily yield a factor ~100 reduction in the variance in the central acceleration field when compared to a traditional equal-mass model with the same number of particles. When evolving both models with a real N-body code, the diffusion coefficients in our model are reduced by a similar factor. Therefore, for certain types of problems, our scheme is a practical method for reducing the two-body relaxation effects, thereby bringing the N-body simulations closer to the collisionless ideal.
We describe the numerical code N-MODY, a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND
The N-body problem has become one of the hottest topics in the fields of computational dynamics and cosmology. The large dynamical range in some astrophysical problems led to the use of adaptive time steps to integrate particle trajectories, however,
Gravitational N-body simulations, that is numerical solutions of the equations of motions for N particles interacting gravitationally, are widely used tools in astrophysics, with applications from few body or solar system like systems all the way up
Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling m
Commercial graphics processors (GPUs) have high compute capacity at very low cost, which makes them attractive for general purpose scientific computing. In this paper we show how graphics processors can be used for N-body simulations to obtain improv